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There is no justice in the laws of nature, no term for fairness in the equations of motion.

The Universe is neither evil, nor good, it simply does not care.

The stars don•t care, or the Sun, or the sky.

But they don•t have to. We care! There is light in the world, and it is us.

„ Eliezer Yudkowsky

To my family





Acknowledgements

First of all, I would like to thank my advisors Mark Pauly and Andrea Tagliasacchi.

I am grateful to Mark for hiring me to work on hand tracking. This topic was in demand at the

start of my PhD and it is even more so at the time of my graduation. Thanks to Mark, my “rst

project was extremely well chosen. I was not starting from scratch, but working in a team of

experienced researchers. The techniques that I learned fueled my entire PhD. Another crucial

point that I want to thank for is freedom that I was given. I came to doctoral school with a goal

to become an independent researcher which is impossible without some freedom to choose

work directions and make mistakes.

I would like to express my deepest gratitude to Andrea Tagliasacchi. I was inspired by his

energy, devotion to research and even more so by his long term vision and revolutionary

ideas. Also I am grateful for his patience, and technical and moral support at dif“cult stages

of my research. Andrea guided me through stagnation and dead ends to accepted papers. It

motivated me a lot to see that he personally cares about success and well-being of his students

and is ready to make big efforts to help. I would like to express my hope that our collaboration

will go on for decades.

I am thankful to So“en Bouaziz for supervising my Master Thesis and co-supervising my “rst

PhD projects. So“en was always there for me to give technical advice, answer questions or

simply cheer me up. I owe So“en my lucky choice career, since I joined the lab to continue

working with him.

I would like to extend my gratitude to my collaborators Mario Botsch, Andrew Fitzgibbon,

Edoardo Remelli and Matthias Schröder. The presence of Matthias brightened the deadline for

our “rst project. The company of Edoardo and the possibility to discuss the technical details

of the project on the daily basis made the last year my PhD more fun.

I would like to thank Andrew Fitzgibbon for supervising my internship at Microsoft Research.

It was a privilege to have weekly discussions and look at the way he approaches research

problems. I am also grateful to Federica Bogo and Tom Cashman for their help and advice.

I am thankful to Luciano Sbaiz and Wei Li for mentoring my internship at Google Research. It

was an intense learning experience and their guidance and support made a big difference.

I am thankful to my thesis committee for “nding the time in their busy schedule to review my

v



Acknowledgements

thesis and conduct the oral exam: Pascal Fua, Vincent Lepetit, Mark Pauly, Gerard Pons-Moll,

Mathieu Salzmann and Andrea Tagliasacchi.

I am grateful to Merlin Nimier-David for his huge help in creating the template hand model.

I also thank Timur Bagautdinov, Pierre Baqué, Jan Bednarik, Anna Biletta, Filippo Candia,

Pei-I Chen, Alexis Dewaele, Giacomo Garegnani, Fabrice Guibert, Tomas Joveniaux, Isinsu

Katircioglu, Mina Konakovic, Andrii Maksai, Hannah Pauly, Edoardo Remelli, Madeleine

Robert, Stefano Savare and Matthieu Sauvé for participation in creating online hand calibration

dataset.

I would like to thank my LGG lab mates for sharing this experience with me: So“en Bouaziz,

Duygu Ceylan, Minh Dang, Mario Deuss, Alexandru-Eugen Ichim, Mina Konakovic, Stefan

Lienhard, Peng Song, Yuliy Schwartzburg, Andrea Tagliasacchi, Ziqi Wang. I am grateful to

Madeleine Robert for all the help. In general I thank my fellow PhD students in EDIC for their

company, especially the ones who came to board games nights and my collocation neighbors

Arseniy Zaostrovnykh and Dmitrii Ustiugov.

Finally, my biggest thanks go to my parents and my life partner Andrii for their love and

support. Thank you, Andrii, sharing with me every moment and making me happy.

My research has been supported by the funding from FNS project 200021_153567.

vi



Abstract

In our everyday life we interact with the surrounding environment using our hands. A main

focus of recent research has been to bring such interaction to virtual objects, such as the ones

projected in virtual reality devices, or super-imposed as holograms in AR/MR headsets. For

these applications, it is desirable for the tracking technology to be robust, accurate, and have

a seamless deployment. In this thesis we address these requirements by proposing an ef“cient

and robust hand tracking algorithm, introducing a hand model representation that strikes a

balance between accuracy and performance, and presenting the online algorithm for precise

hand calibration.

In the “rst part we present a robust method for capturing articulated hand motions in real

time using a single depth camera. Our system is based on a realtime registration process that

accurately reconstructs hand poses by “tting a 3D articulated hand model to depth images. We

register the hand model using depth, silhouette, and temporal information. To effectively map

low-quality depth maps to realistic hand poses, we regularize the registration with kinematic

and temporal priors, as well as a data-driven prior built from a database of realistic hand poses.

We present a principled way of integrating such priors into our registration optimization to

enable robust tracking without severely restricting the freedom of motion.

In the second part we propose the use of sphere-meshes as a novel geometric representation

for real-time generative hand tracking. We derive an optimization to non-rigidly deform a

template model to “t the user data in a number of poses. This optimization jointly captures

the user•s static and dynamic hand geometry, thus facilitating high-precision registration. At

the same time, the limited number of primitives in the tracking template allows us to retain

excellent computational performance. We con“rm this by embedding our models in an open

source real-time registration algorithm to obtain a tracker steadily running at 60Hz.

In the third part we introduce an online hand calibration method that learns the geometry

as the user performs live in front of the camera, thus enabling seamless virtual interaction

at the consumer level. The key novelty in our approach is an online optimization algorithm

that jointly estimates pose and shape in each frame, and determines the uncertainty in such

estimates. This knowledge allows the algorithm to integrate per-frame estimates over time,

and build a personalized geometric model of the captured user. Our approach can easily be

integrated in state-of-the-art continuous generative motion tracking software. We provide a

detailed evaluation that shows how our approach achieves accurate motion tracking for real-
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Abstract

time applications, while signi“cantly simplifying the work”ow of accurate hand performance

capture.

Keywords: non-rigid registration, realtime hand tracking, realtime hand calibration, sphere-

meshes, markerless motion capture
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Résumé

Dans notre vie quotidienne, nous interagissons avec l•environnement en utilisant nos mains.

Un objectif principal de la recherche récente a été d•apporter une telle interaction à des objets

virtuels, tels que ceux projetés dans des dispositifs de réalité virtuelle, ou super-imposés

comme des hologrammes dans les casques AR / MR. Pour ces applications, il est souhaitable

que la technologie de suivi soit robuste, précise et transparente dans le déploiement. Dans

cette thèse, nous répondons à ces exigences en fournissant un algorithme de suivi manuel

ef“cace et robuste, en introduisant une représentation manuelle du modèle qui équilibre la

précision et la performance, et en présentant l•algorithme en ligne pour un étalonnage manuel

précis.

Dans la première partie, nous présentons une méthode robuste pour capturer les mouve-

ments de la main articulée en temps réel en utilisant une caméra de profondeur unique.

Notre système est basé sur un processus d•enregistrement en temps réel qui reconstruit avec

précision les poses de la main en ajustant un modèle de main 3D articulé aux images de

profondeur. Nous enregistrons le modèle de la main en utilisant la profondeur, la silhouette

et l•information temporelle. Pour mapper ef“cacement des cartes de profondeur de basse

qualité à des poses de mains réalistes, nous régularisons l•enregistrement avec des priors ciné-

matiques et temporels, ainsi qu•un préréglage basé sur des données construit à partir d•une

base de données de poses réalistes. Nous présentons une méthode basée sur des principes

pour intégrer ces priors dans notre optimisation d•enregistrement pour permettre un suivi

robuste sans restreindre de manière signi“cative la liberté de mouvement.

Dans la seconde partie, nous proposons l•utilisation de mailles-sphères comme nouvelle

représentation géométrique pour le suivi génératif en temps réel. Nous dérivons une optimi-

sation pour déformer de manière non rigide un modèle étalon pour adapter les données de

l•utilisateur dans un certain nombre de poses. Cette optimisation capture conjointement la

géométrie de la main statique et dynamique de l•utilisateur, facilitant ainsi l•enregistrement de

haute précision. En même temps, le nombre limité de primitives dans le modèle de suivi nous

permet de maintenir d•excellentes performances de calcul. Nous con“rmons cela en intégrant

nos modèles dans un algorithme d•enregistrement en temps réel et code source ouvert pour

obtenir un tracker fonctionnant régulièrement à 60Hz.

Dans la troisième partie, nous introduisons une méthode de calibrage manuel en ligne qui

apprend la géométrie lorsque l•utilisateur se produit en direct devant la caméra, permettant
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Résumé

ainsi une interaction virtuelle transparente au niveau du consommateur. La nouveauté clé

dans notre approche est un algorithme d•optimisation en ligne qui estime conjointement la

pose et la forme dans chaque trame, et détermine l•incertitude dans de telles estimations.

Cette connaissance permet à l•algorithme d•intégrer les estimations d•images dans le temps et

de construire un modèle géométrique personnalisé de l•utilisateur capturé. Notre approche

peut facilement être intégrée dans un logiciel de suivi de mouvement continu, à la pointe de la

technologie. Nous fournissons une évaluation détaillée qui montre comment notre approche

réalise un suivi de mouvement précis pour les applications en temps réel, tout en simpli“ant

grandement le ”ux de travail pour une capture précise des performances de la main.

Mots-clés : enregistrement non-rigide, suivi des mains en temps réel, étalonnage manuel en

temps réel, maillages de sphères, capture de mouvement sans marqueur
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1 Introduction

1.1 Motivation

Tracking humans in motion is a fundamental problem in computer graphics and computer

vision. A particularly important question is how to accurately reconstruct the shape and artic-

ulation of human hands. Firstly, because in our everyday life we interact with the surrounding

environment using our hands [Bullock et al., 2013], [Dollar, 2014]. Secondly, hand motion is a

crucial component of non-verbal communication [Goman, 2009], [Goman, 2011]. The digital

world applications of hand tracking follow from these two functions of hands in the real world.

Performance capture. Performance capture is essential in “lm and game production for

pre-visualization, where motion can be transferred in real-time to a virtual avatar. This allows

directors to plan shots more effectively, reduce turn-around times and hence costs. The

captured motion can also be analyzed for purposes like re-training after stroke, automatically

translating sign language, or giving feedback to piano students.

Remote communication. Being an important part of our body language, hand motion plays

a signi“cant role in the animation of humanoid avatars. The “rst steps towards commercial

avatar-based communication were made by Microsoft Holoportation 1 and Apple Animoji 2.

Gesture control. Gesture control, a simpli“ed version of hand tracking, becomes increasingly

popular as a replacement of remote control for home appliances. It is currently used in such

consumer products as Samsung Smart TV 3 and Singlecue4. A few other similar products are

currently under development.

Virtual interaction. Recently the “eld of virtual and augmented reality (VR/AR) has made

a large step forward. A number of VR/AR headsets were released, including Oculus, Vive,

Samsung Gear VR,Microsoft Hololens, PlayStation VR, Google Daydream, Microsoft Mixed

1Holoportation: https://www.microsoft.com/en-us/research/project/holoportation-3/ , accessed on 27.11.2017
2Apple Animoji: https://support.apple.com/en-us/HT208190 , accessed on 27.11.2017
3Samsung Smart TV: http://www.samsung.com/ph/smarttv/motion_control.html , accessed on 27.11.2017
4Singlecue: https://singlecue.com/ , accessed on 27.11.2017
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Chapter 1. Introduction

Reality Headset, Intel Project Alloy and Meta 2 AR Headset. The technology is incomplete

without providing the user a way to interact with a virtual environment. Most of the listed

headsets started with dedicated controller devices. However, there is a trend in the “eld of

replacing controller devices by markerless hand control. Microsoft Hololens 5, Meta 2 AR

Headset6 and Intel Project Alloy 7 are already released in a hand-controlled version and the

other main manufacturers are also currently developing similar technology. There are several

reasons why VR/AR helmets bene“t from hand control. Firstly, according to the user study

conducted by Leap Motion 8, interacting with your own hands creates a more immersive

experience. Secondly, it takes time to get used to the controller device and to remember

the functionality assigned to each button. Moreover, hands control can potentially be more

expressive and subtle than a dedicated controller device.

Commercial hand control devices are still an emerging technology, because hand tracking is

challenging and remains a research problem. This was even more so at the start of my doctoral

studies in 2014. The challenges are described below.

Requirements

Any consumer application relies on robustness of the tracker. However, the applications listed

above have different requirements in terms of precision, ef“ciency and output format of the

hand tracking algorithm.

A gesture control system is only required to classify a gesture, thus inferring exact hand poses

is not necessary. For performance capture it is acceptable to have slower than real time

performance. In remote communication , the hand motion may be re-targeted to an avatar

hand. In that case it is only required to track joint positions as opposed to an entire hand

surface.

Virtual interaction is the most demanding, yet most promising application. It requires exact

tracking of hand movements. As explained below, accurate tracking is only possible if the

model is precisely calibrated to the user. Moreover, to be suitable for consumer application, it

is undesirable for the calibration to take a long time or require user input. Physically plausible

interaction with a virtual object requires the system to infer not just hand joint positions, but

its full 3D geometry.

5Microsoft Hololens: https://www.microsoft.com/en-us/hololens , accessed on 27.11.2017
6Meta 2 AR Headset: https://www.metavision.com/ , accessed on 27.11.2017
7Intel Project Alloy: https://newsroom.intel.com/press-kits/project-alloy/ , accessed on 27.11.2017
8Leap Motion Blog:http://blog.leapmotion.com/image-hands-bring-your-own-hands-into-virtual-reality/,

accessed on 27.11.2017
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1.1. Motivation

Challenges

Tracking challenges. Accurate hand tracking with a non-invasive sensing device in real-time

is a challenging scienti“c problem. Human hands are highly articulated and therefore require

models with suf“ciently many degrees of freedom to adequately describe the corresponding

motion space. Hand motion is often fast and exhibits intricate geometric con“gurations with

complex contact patterns among “ngers. With a single-camera RGBD setup, we are faced with

incomplete data due to self-occlusions and high noise levels.

Calibration challenges. High precision model based tracking is dif“cult without calibrating

the model to the speci“c user. The main challenge comes from the fact that tracking and

calibration procedures are interdependent. High quality tracking requires good calibration

and, to accurately calibrate the model, the motion needs to be precisely tracked. Moreover,

hand calibration is bound to consider multiple frames, since from a single frame only a subset

of the shape degrees of freedom can be estimated. For example, it is dif“cult to estimate the

length of a phalanx when observing a straight “nger.

Setup

Tracking setup. Over the past two decades a number of techniques have been explored to

address the hand tacking problem, from expensive and unwieldy marker-based mocap [Welch

and Foxlin, 2002] to instrumented gloves [Dipietro et al., 2008] as well as imaging systems [Erol

et al., 2007]. Multi-camera imaging systems can recover the hand pose and hand-objects

interactions with high accuracy [Ballan et al., 2012], but the only system capable to approach

interactive applications is the 10Hz system of [Sridhar et al., 2013]. Conversely, in this thesis

we focus on hand motion tracking with a single RGBD sensor (e.g. Intel RealSense or Microsoft

Kinect), commonly predicted to be readily available in a typical AR/VR consumer experience.

This setup does not require the user to wear a glove or markers. Such single-camera acquisition

is particularly advantageous as it is cheap, does not require any sensor calibration, and does

not impede user movements.

Tracking: discriminative vs. generative. Modern systems for real-time tracking from RGBD

data [Sridhar et al., 2015,Sharp et al., 2015] rely on a combination of discriminative approaches

like [Keskin et al., 2012], and generative approaches such as [Oikonomidis et al., 2011]. The

per-frame re-initialization of discriminative methods prevents error propagation by offering

a continuous recovery from tracking failure. As these discriminative models are learnt from

data, they are typically limited in their precision by dataset annotation accuracy. Annotating

joint locations is challenging because it needs to be done in 3D, and because the joints are

situated inside the hand. These dif“culties affect the labeling quality. Therefore, generative

models are used to re“ne the estimate by aligning a geometric template of the user hand to

the measured point cloud, as well as to regularize its motion through time. It is not surprising

that the quality of the template directly affects the quality of pose re“nement.

3



Chapter 1. Introduction

Calibration setup. The process of accurately generating a user-speci“c tracking model from

input data is referred to in the literature as calibration or personalization. Calibrating a

template from a set of static poses is a standard component in facial performance capture

[Weise et al., 2011,Cao et al., 2015], and the work of [Taylor et al., 2014] pioneered it within

the realm of hand tracking. However, current methods such as [Taylor et al., 2016] suffer a

major drawback: the template must be created during a controlled calibration stage where

the hand is scanned in several static poses (i.e. of”ine). While appropriate for professional

use, a calibration session is a severe drawback for seamless deployment in consumer-level

applications.

1.2 Contributions

This dissertation is based on and uses parts of the following papers published in the course of

my PhD:

1. TAGLIASACCHI A., SCHROEDER M., T KACH A., BOUAZIZ S., BOTSCH M., PAULY M.:

Robust articulated-icp for real-time hand tracking. Computer Graphics Forum(Proc. of

the Symposium on Geometry Processing). 2015.

2. TKACH A., PAULY M., TAGLIASACCHI A.: Sphere-meshes for real-time hand modeling

and tracking. In ACM Trans. Graph. (Proc. SIGGRAPH Asia). 2016.

3. TKACH A., TAGLIASACCHI A., REMELLI E., PAULY M., F ITZGIBBON A.: Online gener-

ative model personalization for hand tracking. ACM Transactions on Graphics (Proc.

SIGGRAPH Asia). 2017.

The accompanying videos, Video1 9, Video2 10, and Video3 11, illustrate the real-time tracking

performance of the presented systems.

The following paper, also published during my PhD, is not discussed in this thesis, since its

contributions are contained within the later work.

REMELLI E., TKACH A., TAGLIASACCHI A., PAULY M.: Low-Dimensionality Calibration

through Local Anisotropic Scaling for Robust Hand Model Personalization. Proceedings

of the International Conference on Computer Vision. 2017 .

In summary, the contributions of this dissertation are:

€ Robust real-time model-based hand tracking algorithm. We develope a robust model-

based hand tracking algorithm that ef“ciently integrates data and regularization priors

9Please “nd the accompanying Video1 at http://lgg.ep”.ch/publications/2015/Htrack_ICP/new_video.mp4 .
10Please “nd the accompanying Video2 at http://lgg.ep”.ch/publications/2016/HModel/video.mp4 .
11Please “nd the accompanying Video3 at http://lgg.ep”.ch/publications/2017/HOnline/video.mp4 .
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1.2. Contributions

into a uni“ed real-time solver running at 60 FPS. The “st key component of the algorithm

is an ef“cient combined 2D/3D registration method to align the 3D hand model to the

acquired depth map and extracted silhouette image. The second key feature is a new

way of computing data-to-model correspondences that accounts for occlusions and

signi“cantly improves the robustness of the tracking
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Chapter 1. Introduction

€ Sphere-meshes model for ef“cient and accurate hand shape representation. We present

a sphere-meshes hand model and demonstrate that it provides superior hand tracking

performance for single-view depth sensors. We introduced an optimization approach

that allows adapting our tracking model to different human hands with a high level

of accuracy. The improved geometric “delity compared to existing representations

leads to quanti“able reductions in registration error and allows accurate tracking even

for intricate hand poses and complex motion sequences that previous methods have

dif“culties with. At the same time, due to a very compact model representation and

closed-form correspondence queries, our generative model retains high computational

performance, leading to sustained tracking at 60 FPS.

€ Online hand model calibration. We introduce a principled way of integrating per-

frame information into an online real-time pose/shape tracking algorithm: one that

estimates the hand•s pose, while simultaneously re“ning its shape. That is, the more

of the user•s hand and articulation is observed during tracking, the more the tracking

template is progressively adapted to match the performer, which in turn results in more

accurate motion tracking. Our technique automatically estimates the con“dence in

per-frame parameter computations, and leverages this information to build a tracking

model that selectively accumulates con“dent parameter estimates over time. Assuming

a reasonable performance by the user, our system typically constructs a fully calibrated

model within a few seconds, while simultaneously tracking the user in real time.

€ Open Source. Another important contribution is that we fully disclosed our source code.

We believe that publishing our code will not only ensure reproducibility of our results,

but also facilitate future research in this domain.

1.3 Overview

The remainder of the thesis describes our steps in solving the problem of precise model-based

hand tracking. The problem consists of two inter-dependent components: tracking and

calibration.

Section 1.4 presents a detailed review of existing real-time single view hand tracking systems

that are using depth input.

Chapter 2 describes our initial hand tracking system that uses the cylinders hand model. In

Sections 2.1 we place our work in a broader context. In Section 2.2 we address the challenges

of robust hand tracking by proposing a regularized articulated ICP-like optimization that

carefully balances data “tting with suitable priors. Our data “tting performs a joint 2D-3D

optimization. The 3D alignment ensures that every point measured by the sensor is suf“ciently

close to the tracked model. Simultaneously, as we cannot create such constraints for occluded

parts of the hand, we integrate a 2D registration that pushes the tracked model to lie within the

estimated foreground. In Section 2.3 we detail a carefully chosen set of priors that regularize

6
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the solution to ensure the recovered pose is plausible. After discussing some implementation

details in Section 2.4, we analyze tracking performance by providing a comparison to several

state-of-the-art solutions in Section 2.5.

Chapter 3 addresses the choice of hand model representation that is suitable both for ef“cient

tracking and for accurate calibration. In Sections 3.1 and 3.2 we motivate the work, discuss

related literature and our contributions. In Section 3.3 we detail how our novel formulation

“ts into previous generative real-time hand tracking technique, while still enabling ef“cient

correspondence computation. Section 3.4 explains how we build our template model from

3D scans acquired either through multi-view stereo or from depth maps. In Section 3.5 we

analyze the performance of our model for realtime tracking and provide comparisons to the

state-of-the-art.

In Chapter 4 we reconsider of”ine calibration, aiming to enhance user experience and push

calibration quality further. In Sections 4.1 and 4.2 we introduce the topic, explain the relevance

of our work and position it with respect to other approaches in the area. In Section 4.3 we

describe our joint calibration and tracking algorithm, which combines the Levenberg-style

optimization of previous hand trackers with the uncertainty bookkeeping of the Kalman

“lter. In Section 4.4, to evaluate the technical validity of our approach, we corroborate the

formulation of our optimization on a synthetic 3D dataset, analyze its robustness by randomly

perturbing the algorithm initialization, and attest how our method achieves state-of-the-art

performance on publicly available datasets. In Section 4.6 we introduce the Kalman “lter with

its extensions and derive the equivalence of the proposed online calibration scheme with a

recent tool from control theory … the Levenberg-Marquardt Kalman Filter.

1.4 Related Works

In this section we summarize the main works in real-time single view hand tracking from

depth input. The works from the other areas relevant to the subsequent chapters of this thesis

are reviewed in the related literature sections of the corresponding chapters.

Tracking algorithms can be roughly divided into two main classes: discriminative and genera-

tive.

€ Discriminative methods directly predict hand pose from image features. State-of-the-art

approaches learn the mapping between the image and hand pose from the annotated

training data. The most widely used learning algorithms are Random Decision Forest

(RDF) [Keskin et al., 2012] and Convolutional Neural Networks (CNN) [Tompson et al.,

2014]. Discriminative algorithms regress a small number of key features, like joint

positions or angles, as opposed to the full hand geometry. The predicted hand pose can

afterwards be used to drive a hand model, however the surface of the model is often not

exactly aligned with the data.

€ Generative methods minimize the discrepancy between the hand model and the input
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Chapter 1. Introduction

data by solving a data-model alignment problem. The main algorithms used for this

task are gradient descent [Taylor et al., 2016] and Particle Swarm Optimization (PSO)

[Oikonomidis et al., 2011]. There are also some new works that use CNNs [Dibra et al.,

2017], [Wan et al., 2017]. Gradient Descent and PSO require initialization, which is either

obtained from hand pose at the previous frame or from a discriminative method.

1.4.1 Discriminative Methods

[Keskin et al., 2012] estimate hand pose by predicting the hand part labels probabilities for

each pixel. The labels prediction is done using an RDF. The centers of the hand parts are

inferred by representing each label with a gaussian and “nding the maximum on the resulting

surface. This is under the assumption that the pixel with maximum probability value for the

given hand part is situated in the center of that hand part. The hand skeleton is obtained by

connecting the joints according to their con“guration in the hand. To improve performance,

the training set is split in clusters of similar hand poses. The results from different clusters are

aggregated by an expert network.

[Tang et al., 2014] present a method similar to the one introduced by [Keskin et al., 2012].

Differently from the former, instead of using an RDF for predicting hand parts, they adopt

Latent Regression Forest (LRF). In LRF the non-leaf nodes correspond to groupings of hand

parts. The method performs structured coarse-to-“ne search, starting with the entire hand

and recursively splitting it, until locating all the skeletal joints. This work has superior perfor-

mance with respect to [Keskin et al., 2012], where one of the reasons is greater robustness to

occlusions.

[Tompson et al., 2014] pioneered using CNNs for discriminative hand tracking. Their work

(and numerous subsequent methods) are enabled by the automatically labeled dataset that

they have constructed. The authors trained a CNN to generate a set of heat-map images for

key hand features, taking multi-resolution depth images as an input. At each resolution the

network contains two convolution layers; each convolution is followed by RELU and max

pooling. The concatenated outputs of convolution layers are fed to two fully connected layers.

The “nal kinematically valid hand pose is obtained by applying an inverse kinematic model

on the heat-maps.

[Sun et al., 2015] use cascaded regression for predicting hand pose. In the cascaded regression

framework, the pose is estimated iteratively by a sequence of regressors. Each regressor uses

the output of the previous one, progressively decreasing the error. The regressors are learned

with RDF. The authors modify offset features, widely used for RDF, to make them invariant to

3D transformations. They also propose a hierarchical approach to regress hand pose. Firstly,

the palm transformation is regressed. The inverse of this transformation is afterwards applied

to the “ngers before estimating their poses. This approach is shown to perform better than

estimating the pose holistically, as it reduces appearance variations for the “ngers.

8



1.4. Related Works

[Tang et al., 2015] propose to estimate hand pose hierarchically starting with the parameters

at the base of hand kinematic chain and inferring the parameters at each next layer condi-

tioned on the previous layer (layer 1 … wrist tran slation, layer 2 … wrist rotation, and so on

along the kinematic chain). For ef“ciency they formulate a cost function in terms of joint

positions only. Advantageously, evaluation of this cost function does not require rendering

the model or computing closest point correspondences. Moreover, this cost function can also

be evaluated for partial poses. The proposed hierarchical optimization framework generates

several samples of the partial pose at each layer, the sample with the minimal value of cost

function is then selected. To generate the samples, the authors train an RDF for predicting

partial poses. They use standard features for RDF on depth images. The system generates

multiple hypotheses using the described approach, the “nal pose is selected by evaluating the

•golden energyŽ suggested by [Sharp et al., 2015]. This approach outperforms the other works

that use hierarchical hand pose estimation algorithms, such as [Tang et al., 2014] and [Sun

et al., 2015].

[Li et al., 2015] extend the work of [Keskin et al., 2012] and [Tang et al., 2015] by proposing

another variant of RDF. Similarly to [Tang et al., 2014], the method performs structured coarse-

to-“ne search, starting with entire hand and splitting it recursively to joints. Differently

from [Tang et al., 2014] the division hierarchy of hand parts may not be the same for different

poses. The work achieves superior performance on the ICVL dataset ( [Tang et al., 2014]).

[Oberweger et al., 2015a] compare several CNN architectures and “nd that the best perfor-

mance is given by a deeper architecture that takes depth images at several scales as an input.

The rationale is that using multiple scales helps capturing contextual information. The authors

also propose to regress hand pose parameters in a lower-dimensional subspace. After the

initial estimation phase follows a re“nement step. To enhance the location estimate provided

by the “rst stage, they use a different network for each joint. The per-joint networks look at

several patches of different sizes centered on the predicted joint location. The re“nement step

is repeated several times, each iteration is centered on a newly predicted location.

[Ge et al., 2016] propose to project the input depth image onto orthogonal planes and use the

resulting views to predict 2D heat-maps of joint locations on each plane. These 2D heat-maps

are then fused to produce the “nal 3D hand pose. The fusion step is expected to correct the

imprecisions using the predictions from complementary viewpoints. The authors use a multi-

resolution CNN on each view with architecture similar to the one introduced by [Tompson

et al., 2014]. Given the 2D heat maps from the three views, they “nd the hand pose parameters

in a lower dimensional PCA subspace, such that the total heat map con“dence at the joint

locations on the three views is maximized.

[Sinha et al., 2016] exploit activation features from a hidden layer of a trained CNN. The

assumption is that augmenting an output activation feature by a pool of its nearest neighbors

brings more reliable information about the hand pose. Drawing on the fact that CNNs are

less robust for regression than for classi“cation, the authors compute the activation features
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from classifying joint angles into bins with a CNN (as opposed to regressing the exact values

of the joint angles). Since the number of quantized hand poses is very large, they propose a

two-stage classi“cation. On the “rst stage global hand rotation is classi“ed. Next, for each

rotation bin, “ve separate CNNs are trained to classify the poses of the “ngers. At run time,

given the activation features, a pool of their nearest neighbors is ef“ciently retrieved from

a database. The “nal hand pose is computed from the assumption that a matrix of stacked

neighboring activation features concatenated with stacked corresponding hand poses has a

low rank. The unknown current hand pose is computed by matrix completion 12.

[Zhou et al., 2016] integrate domain knowledge about hand motion into a CNN. This is done

by adding a non-parametric layer that encodes a forward kinematic mapping from joint

angles to joint locations. Since the forward kinematic function is differentiable, it can be used

in a neural network for gradient-descent like optimization. This approach guarantees that

the predicted hand pose is valid. The remaining network architecture is similar to the one

introduced by [Oberweger et al., 2015a].

[Guo et al., 2017] propose to use a hierarchically-structured Region Ensemble Network (REN)

for hand pose inference. This architecture is inspired by the widely used approach of averaging

predictions from different crops of an original image. The averaging is bene“cial since it

decreases the variance of image classi“cation; however, it is computationally expensive. The

authors propose a solution that retains the advantages while cutting the costs. They suggest

to split the input image in several regions, predict the whole hand pose separately from

each region and aggregate regional results afterwards. The REN architecture starts with six

convolutional layers augmented with two residual connections. The region-wise prediction

is implemented through dividing the output of the convolutional layers into a uniform grid.

Each grid cell is fed into fully connected layers. Subsequently the outputs of all the cells are

concatenated together and used to predict the “nal hand pose. This approach has state-of-

the-art performance on the NYU and ICVL datasets.

[Madadi et al., 2017] propose a hierarchical tree-like CNN that mimics the kinematic structure

of human hand. The branches of the network are trained to become specialized in predicting

the locations of subsets of hand joints (local pose), while the parameters closer to the tree

root are shared for all hand parts. The network contains a loss term for each local pose.

Additionally, the outputs of the tree branches are concatenated and fed to the fully-connected

layer for estimating the “nal pose. The authors argue the later step allows to learn higher order

dependencies among joints. The loss function also contains the terms that penalize predicting

joint locations outside of data hull and encourage all joints from one “nger to be co-planar.

[Mueller et al., 2017] present a method for predicting hand pose in egocentric view. Their

system is designed for hand-object interaction scenarios and is robust to occlusions. They

12Matrix completion is the task of “lling in the missing entries of a partially observed matrix. One of the variants
of the matrix completion problem is to “nd the lowest rank matrix X which matches the matrix M , which we wish
to recover, for all entries in the set E of observed entries. "Matrix completion." Wikipedia: The Free Encyclopedia.
Wikimedia Foundation, https://en.wikipedia.org/wiki/Matrix_completion , [accessed 30 January 2018].
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estimate hand pose in several steps. Firstly, to localize the hand, a heat map of the hand root

position is regressed. Given the hand root, the input image is normalized and feed into a joint

regression network. This network outputs 2D heat maps and 3D positions of the joints. As

the last step, a kinematically valid hand pose is computed by optimizing a sum-of-energies

cost function. The cost function includes the closeness of optimized joint locations to the

CNN-predicted joint locations, joint limits and temporal smoothness term. Both networks are

trained on synthetic data generated by accurately tracked hand motion with existing tracker

and retargeting it to a virtual hand model.

[Oberweger and Lepetit, 2017] extend their previous work [Oberweger et al., 2015a]. They

carry out an extensive evaluation to show that the improved method achieves superior or

comparable performance to all recent works on three main benchmarks of hand tracking (NUY,

ICVL and MSRA). The authors introduce the following improvements: “rstly, the training data

is augmented to 10M samples (by translating, rotating and scaling). The second enhancement

is training a CNN that regresses hand root for accurate hand localization. Finally, the new

pose network architecture is similar to ResNet: a convolution layer is followed by four residual

modules, that are in turn followed by several fully connected layers with dropout.

1.4.2 Generative Methods

[Oikonomidis et al., 2011] present a generative tracking approach. Their algorithm minimizes

the difference between the sensor data and the rendered capsules model. The optimization is

performed using Particle Swarm Optimization. The method runs at 15 fps on GPU and does

not include any re-initialization component in case of tracking failure.

[Melax et al., 2013] show compelling 60 fps realtime performance using gradient-based op-

timization. The authors introduce a convex polyhedral model and track it with a rigid body

dynamics solver. The rigid bodies from the model are constrained to come into alignment

with the point cloud. The hand parts are attached together by constraints of a larger strength.

Thus, in contrast with the majority of model-based systems, their technique does not use

Inverse Kinematics. Each data point adds a constraint on the closest articulated component

of the hand. The model is also constrained to stay within 3D hull of the point cloud by adding

collision planes constraints on the boundaries of the convex hull.

[Oikonomidis et al., 2014] extend their previous work [Oikonomidis et al., 2011] by introducing

a more advanced sampling strategy that improves tracking ef“ciency without compromising

quality. They sample the hand-pose vectors using quasi-random sequence that covers multi-

dimensional spaces better than random sampling. However, gradient-based optimization

approaches converge faster and more accurately than PSO when close to the solution.

[Qian et al., 2014] modify the PSO algorithm employed by [Oikonomidis et al., 2011] by adding

a gradient-based component to it. Each particle takes an additional ICP-like gradient descent

step in each PSO generation. This is intended to combine advantages and mitigate drawbacks
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of PSO and ICP. The authors demonstrate that their system has superior performance to

[Oikonomidis et al., 2011]. The presented system is hybrid, it uses a spheres model for ICP-PSO

optimization and detects “ngertips with ”ood “ll for re-initialization. Apart from closeness of

the model to the data, the cost function also includes a term that constrains the model to lie

within the sensor visual hull and behind the data.

[Schroder et al., 2014] formulate the optimization in a subspace of likely hand poses, rather

than resorting to reinitialization for robustness. They capture a dataset of human hand

movements with a Vicon motion tracking system. The dataset is employed as the ground truth

for deriving natural hand synergies based on principal component analysis. While the lower

number of optimization variables leads to ef“cient computations, tracking accuracy can be

limited by the reduced pose complexity induced by the subspace. The authors use a cylinder

hand model driven by Inverse Kinematics and apply ICP algorithm for aligning the model with

the data.

[Fleishman et al., 2015] present a system that uses capsules hand model and ICP-IK algorithm

for data-model alignment. For initialization they train an RDF classi“er to label data pixels

with hand parts. To increase the robustness, the system generates several hypotheses of hand

pose from the labeled data. In the “nal step, they apply ICP-IK algorithm to each skeleton

hypothesis (with each “nger being straight or bent). The closest-point correspondences are

only created between the same parts of the data and model. The authors show that ICP-IK

algorithm gives superior performance with respect to their implementation of PSO.

[Oberweger et al., 2015b] design a convolutional neural network capable of directly synthe-

sizing hand depth images. The motivation for this work is replacing hand model for hybrid

tracking. As a “rst step they use a CNN to predict an initial pose from the depth input. The

initial pose is used to synthesize a depth image. The synthesized image and the input image

are fed to an updater CNN. The updater learns to predict updates, which would improve the

pose estimate, given the input and the synthesized depth. This process is repeated for several

iterations. The synthesizer network consists of several fully-connected layers followed by

several unpooling and convolution layers. The updater network has a siamese architecture.

It consists of two identical paths of several convolutional layers. The “nal feature maps are

concatenated and fed into a fully connected network.

[Poier et al., 2015] initialize the proposed hybrid tracking system by regressing hand joint

locations with an RDF. The authors consider several top predictions for each joint along with

the con“dence score. The kinematic parameters of a 3D hand model are determined by

selecting a proposal for each joint location, such that the chosen locations for all joints form

an anatomically valid pose. They apply PSO algorithm for optimizing the described cost

function. For ef“ciency, the authors split the full PSO problem into sub-problems, solving

for the pose of each “nger independently. Differently from [Oikonomidis et al., 2011], this

approach does not require rendering the model, thus it can run on CPU.

[Sharp et al., 2015] introduce a hybrid approach that minimizes the •golden energyŽ - the
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reconstruction error between a rendered 3D hand model and the observed depth image.

The rendered image has a potential to match the observed image, since they use a detailed

triangular mesh hand model instead of spheres/cylinders. The model is not differentiable;

thus the authors apply PSO algorithm for optimization. For re-initialization they use Kinect-

provided skeleton and train a two-staged RDF regressor. The “rst stage only deals with

predicting quantized global hand rotation, while the second stage re“nes the rotation and

regresses the pose. The system is robust and works well at a distance of several meters and in

moving camera scenarios.

[Sridhar et al., 2015] encode the model with a prede“ned mixture of Gaussians. The data is

also represented as a mixture of Gaussians. This is done through decomposing the depth

image into regions of homogeneous depth (using a quad-tree) and “tting a Gaussian to each

region. The authors optimize the closeness of model to the data with gradient descent. A

Gaussian mixture representation allows, instead of computing closest point correspondences,

to match data mixtures of Gaussians with the model. For robustness the system generates

multiple hypotheses of hand pose and chooses the best one based on pose “tting energy. One

of the hypothesis comes from an RDF hand parts classi“er. For that hypothesis a different type

of energy is optimized: each Gaussian in the data is given a part label which is most frequent

among its pixels; the model is aligned with the data according to hand part labels.

[Taylor et al., 2016] present a continuous registration framework for tracking hands with

triangular meshes. The control mesh is augmented with a continuous Loop subdivision

surface that provides gradients for optimization. Similar to [Tagliasacchi et al., 2015] they

de“ne a differentiable cost function as a weighted sum of several terms, including data energy,

joint limits, pose prior, temporal prior, etc. For the data energy term they introduce an

alternative to the ICP algorithm. To compute closest point correspondences, they de“ne a set

of corresponding variables that are optimized jointly with the model pose. Compared to ICP,

the proposed algorithm requires less iterations and has a wider convergence basin.

[Dibra et al., 2017] propose the “rst CNN-based approach that does not require an annotated

hand-motion dataset for training. As a “rst step, they train a network to predict an approximate

hand pose from synthetic depth images. As a second step, they re“ne the network by training

it on the unlabeled data. The loss function on unlabeled data is an L1 error norm between the

input depth image and a synthesized depth image, given the current hand pose. To enable

backpropagation of the error, the authors introduce a differentiable algorithm for •renderingŽ

the hand model. The algorithm applies linear blend skinning to the point cloud that was

uniformly sampled from the hand model. The authors also propose a differentiable method

for rendering only the visible part of the model, which relies on de“ning a support circle for

each model point. The presented system achieves performance comparable to state of the art

methods without requiring costly annotation.

[Taylor et al., 2017] introduce a new hand model representation that avoids the compromise

between ef“ciency and accuracy. This is achieved by constructing an articulated signed dis-
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tance function that provides closed-form distances to the model surface and is differentiable.

In more details, the hand model is driven by a linear blend skinned tetrahedral mesh, that

deforms a precomputed signed distance “eld into a given pose. The closest point correspon-

dences are computed in ef“cient and parallelizable manner. This allows the system to run

at ultra-high frame rates on GPU (1000Hz). Due to its ef“ciency and robustness, this system

accurately tracks complex interaction of two hands.

[Wan et al., 2017] propose a framework for learning from unlabeled data in a semi-supervised

manner. They learn a shared latent space where each point can be mapped both to a synthetic

depth image and to the corresponding hand pose parameters. The hand pose is regressed

by training a discriminator to predict a posterior of the latent pose given the input depth

image. The depth image generator and discriminator are trained jointly in order to improve

generalization. To avoid over“tting during posterior estimation the authors add additional

loss terms that share “rst several convolutional layers with pose estimation.

1.4.3 Comparison of Previous Works

The comparative summary of previous hand tracking works is presented in Table 1.1, while

the partial ranking of their accuracy on hand tracking benchmarks in shown in Table 1.2.

Comparative Summary. Table 1.1 includes the type of applied discriminative and/or genera-

tive algorithm, the type of hand model, the time complexity of the system (GPU/CPU and FPS)

as well as domain knowledge (priors) incorporated in each method and the type of “nal output.

The “nal output can be different from the model type for some discriminative approaches

that perform a model-“tting step after regressing joint locations.

We use the following naming conventions:

€ inconsistent joints - model type for discriminative methods that predict a set joint

locations per-frame. Without an additional model “tting step, joint locations are not

guaranteed to correspond to a skeleton with consistent length of phalanges. Thus, they

can over“t to the input data and get higher performance score, but cannot be directly

used to drive a hand model.

€ skeleton - model type for discriminative methods that regress joint angles. These meth-

ods use a skeleton with constant joint length to pose it with the predicted joint angles.

€ <description> model - (volumetric) model type for generative methods, where the <de-

scription> names model components, such as capsules, spheres, triangular mesh, Gaus-

sians, ect.

€ point cloud - model type for generative methods that train a CNN to regress an image/point-

cloud of the hand.
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Chapter 1. Introduction

Partial Ranking of Accuracy. Table 1.2 contains ranking of the described methods on the

following benchmarks:

€ NUY dataset - introduced by [Tompson et al., 2014];

€ NYU dataset, Subject 1- introduced by [Tompson et al., 2014];

€ ICVL dataset - introduced by [Tang et al., 2014];

€ MSRA dataset- introduced by [Sun et al., 2015];

€ Dexter dataset - introduced by [Sridhar et al., 2013];

€ FinterPaint dataset - introduced by [Sharp et al., 2015];

€ Handy dataset - introduced by [Tkach et al., 2016]

The ranking of the methods on the above benchmarks is obtained from the following sources:

A - [Oberweger and Lepetit, 2017], Table 1;

B - [Oberweger and Lepetit, 2017], Figure 5;

C - [Oberweger and Lepetit, 2017], Table 2;

D - [Oberweger and Lepetit, 2017], Table 3;

E - [Taylor et al., 2017], Figure 12;

F - [Taylor et al., 2016], Figure 10;

G - [Taylor et al., 2017], Figure 15;

H - [Oberweger and Lepetit, 2017], Figure 6;

I - [Tang et al., 2015], Figure 6;

J - [Sridhar et al., 2015], Figure 4;

K - [Tkach et al., 2017], Figure 9;

L - [Dibra et al., 2017], Figure 8;

M - [Neverova et al., 2017], Figure 8;

N - [Tkach et al., 2017], Figure 8;

The reference to the source in the header of the column, for example NUY A, means that the

ranking of the all methods shown in the column was inferred from the source A. The reference

to the source in the table cell, for example 1 H, means that the ranking of the corresponding

method does not come from the source listed in the column header, but was inferred from the

source H. The interval of the ranks instead of a single number, for example [10 - 11], refers to

the fact that the exact rank is unclear and is somewhere in the interval.
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1.4. Related Works

Paper NUY A NUY Subject 1 B ICVL C MSRAD Dexter E Finger Paint F Handy G

[Oikonomidis et al., 2011]

[Keskin et al., 2012] [11Š 12]I

[Melax et al., 2013] [11Š 12]I

[Xu and Cheng, 2013] 3

[Oikonomidis et al., 2014]

[Qian et al., 2014]

[Schroder et al., 2014]

[Tang et al., 2014] 10 5J

[Tompson et al., 2014] 11 7

[Fleishman et al., 2015]

[Li et al., 2015]

[Oberweger et al., 2015a] 10 8

[Oberweger et al., 2015b] 7 4

[Poier et al., 2015]

[Sharp et al., 2015] 2 5

[Sridhar et al., 2015] 4

[Sun et al., 2015] 6 4

[Tagliasacchi et al., 2015] 5 2 4

[Tang et al., 2015] 6 1H

[Ge et al., 2016] 3

[Sinha et al., 2016] [10Š 11]M

[Taylor et al., 2016] [2 Š 3] 1 1 3

[Tkach et al., 2016] 1

[Wan et al., 2016] 5 4

[Zhou et al., 2016] 9 9

[Fourure et al., 2017] 8 5

[Dibra et al., 2017] [3 Š 6]L [4 Š 7]L

[Guo et al., 2017] 2 3H

[Madadi et al., 2017] 6

[Mueller et al., 2017]

[Neverova et al., 2017] 4

[Oberweger and Lepetit, 2017] 1 1 2H 1

[Taylor et al., 2017] 3 2

[Tkach et al., 2017] [2 Š 3]N 1K

[Wan et al., 2017] 7 2

Table 1.2 … Comparative performance of hand tracking methods

19





2 Robust Articulated-ICP for Real-Time
Hand Tracking

Figure 2.1 … Our system tracks the motion of hands while remaining robust to fast motion,
sensor imperfections and self-occlusions.

This chapter is based on the following publication:

TAGLIASACCHI A., SCHROEDERM., T KACH A., BOUAZIZ S., BOTSCH M., PAULY M.: Robust

articulated-icp for real-time hand tracking. Computer Graphics Forum(Proc. of the

Symposium on Geometry Processing) (2015).

The above publication also appears in the thesis of a co-author of the paper, Matthias Schroeder.

Abstract

We present a robust method for capturing articulated hand motions in real-time using a

single depth camera. Our system is based on a real-time registration process that accurately

reconstructs hand poses by “tting a 3D articulated hand model to depth images. We register

the hand model using depth, silhouette, and temporal information. To effectively map low-
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Xs

Xs

Xs

Xs

Ss

Ss

Figure 2.2 … The two different sensors used in our experiments provide data with substantially
different characteristics. Top: Intel•s Creative Interactive Gesture camera (time of ”ight)
provides a complete silhouette image Ss, but low quality depth measurements, resulting in
severe noise in the point cloud Xs. Bottom: Point clouds acquired by the PrimeSense camera
(structured light) are much smoother, but the silhouette image can contain signi“cant gaps.

quality depth maps to realistic hand poses, we regularize the registration with kinematic and

temporal priors, as well as a data-driven prior built from a database of realistic hand poses.

We present a principled way of integrating such priors into our registration optimization to

enable robust tracking without severely restricting the freedom of motion. A core technical

contribution is a new method for computing tracking correspondences that directly models

occlusions typical of single-camera setups.

2.1 Introduction

In this chapter we introduce a system for real-time hand tracking suitable for personal desktop

environments. Our non-invasive setup using a single commodity RGBD sensor does not

require the user to wear a glove or markers. Such single-camera acquisition is particularly

advantageous as it is cheap, does not require any sensor calibration, and does not impede

user movements.

Accurate hand tracking with a non-invasive sensing device in real-time is a challenging sci-

enti“c problem. Human hands are highly articulated and therefore require models with

suf“ciently many degrees of freedom to adequately describe the corresponding motion space.

Hand motion is often fast and exhibits intricate geometric con“gurations with complex contact

patterns among “ngers.

With a single-camera RGBD setup, we are faced with incomplete data due to self-occlusions

and high noise levels (see Figure 2.2).

Yet the simplicity of the hardware and the ease of deployment make this setup the most promis-

ing for consumer applications as evidenced by the recent proliferation of new consumer-level
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Figure 2.3 … A visualization of the template hand model with the number and location of
degrees of freedom of our optimization. From left to right: The cylinder model used for
tracking, the skeleton, the BVH skeleton exported to Maya to drive the rendering, the rendered
hand model.

sensors.

To cope with the limited amount of available information, we employ an articulated template

model as a geometric prior for shape completion and topology control. Our model does not

only encode geometry, but also serves as a domain to represent information about plausible

hand poses and motions. This statistical information, built by analyzing a database of anno-

tated poses, is directly embedded into the optimization, which allows accurate tracking with a

high number of degrees of freedom even in challenging scenarios.

Contributions

We present a complete system for real-time hand tracking using a single commodity RBGD

input sensor. Our core technical contributions are:

€ a novel articulated registration algorithm that ef“ciently integrates data and regulariza-

tion priors into a uni“ed real-time solver; see Section 2.3 and Appendix 2.7.6,

€ a combined 2D/3D registration method to align the 3D hand model to the acquired

depth map and extracted silhouette image; see Section 2.3.1,

€ a new way of computing data-to-model correspondences that accounts for occlusions

and signi“cantly improves the robustness of the tracking; see Section 2.3.1,

€ a new regularization strategy that combines a statistical pose-space prior with kinematic

and temporal priors to simultaneously ensure the inferred hand poses are plausible and

aid the algorithm in recovering from loss-of-tracking; see Section 2.3.2,
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linear
solve

data fitting

converged?

3D correspondences

2D correspondences

yesno

bounds pose space

temporal

collision

silhouette posed model

distance trans. point cloud

lost tracking?

yesno
color image

depth image

reinitialize

� (t )

[� , � ]

Figure 2.4 … Overview of our algorithm. For each acquired frame we extract a 3D point cloud
of the hand and the 2D distance transform of its silhouette. From these we compute point
correspondences to align a cylinder model of the hand to best match the data. This registration
is performed in an ICP-like optimization that incorporates a number of regularizing priors to
ensure accurate and robust tracking.

€ exposing an interesting relationship between the well known point-to-plane registration

energy and Gauss-Newton; see Appendix 2.7.4.

Another important contribution is that we fully disclose our source code 1. To the best of

our knowledge, no other freely available implementation is available, and we believe that

publishing our code will not only ensure reproducibility of our results, but also facilitate future

research in this domain.

Note that there is a widespread belief [Wei et al., 2012, Zhang et al., 2014, Qian et al., 2014]

that ICP-like techniques are too local and prone to local minima to successfully deal with fast

articulated motion. One of our contributions is to show this commonly held belief should

be re-considered. We demonstrate that a regularized geometric registration approach in the

spirit of ICP can achieve outstanding performance. We believe this will signi“cantly impact

future research in this domain, as it will allow further development of registration techniques

for real-time tracking, in contraposition to commonly employed techniques from the vision

community like discriminative [Tompson et al., 2014] and PSO [Qian et al., 2014] methods.

Our regularized geometric registration achieves robust, highly articulated hand tracking at up

to 60 frames per second (fps). We quantitatively and qualitatively compare the performance

of our algorithm to recent appearance-based and model-based techniques (see Section 2.5).

These comparisons show a signi“cant improvement in accuracy and robustness compared to

the current state-of-the-art.

2.2 Overview

Robust hand tracking with a commodity depth sensor is highly challenging due to self-

occlusion, low quality/density of sensor data and the high degree of articulation of the human

hand. We address these issues by proposing a regularized articulated ICP-like optimization

1https://github.com/OpenGP/htrack

24



2.2. Overview

sensor cloudXs

sensor silh. Ss

wristband mask

depth image

PCA wristband hand ROI

�

Figure 2.5 … We “rst identify the wristband mask by color segmentation, then compute the 3D
orientation of the forearm as the PCA axis of points in its proximity. Offsetting a 3D sphere
from the wristband center allows isolating the region of interest. The obtained silhouette
image and sensor point clouds are shown on the right.

that carefully balances data “tting with suitable priors (Figure 2.4). Our data “tting performs

a joint 2D-3D optimization. The 3D alignment ensures that every point measured by the

sensor is suf“ciently close to the tracked model M . Simultaneously, as we cannot create such

constraints for occluded parts of the hand, we integrate a 2D registration that pushes the

tracked model to lie within the sensor visual hull. A carefully chosen set of priors regularizes

the solution to ensure the recovered pose is plausible.

Acquisition device

Our system processes raw data acquired at 60 fps from a single RGBD sensor. Figure 2.2

illustrates this data for the PrimeSense Carmine 1.09structured light sensor as well as the

Creative Gesture Cameratime-of-”ight sensor. From the raw data our algorithm extracts a

2D silhouette image Ss and a 3D point cloud Xs. The two sensors exhibit different types of

imperfections. The precision of depth measurements in the PrimeSense camera is signi“cantly

higher. However, substantial holes often occur at grazing angles, e.g. note the gap in the data

where we would expect to see the index “nger. Conversely, the Creative Gesture Camera

provides an accurate and gap-free silhouette image, but suffers from high noise in the depth

measurements, therefore resulting in very noisy point clouds. Our algorithm is designed

to handle both types of imperfections. This is achieved by formulating an optimization

that jointly considers silhouette and point cloud, balancing their contribution in a way that

conforms to the quality of sensor data.
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Chapter 2. Robust Articulated-ICP for Real-Time Hand Tracking

Tracking model

Our algorithm registers a template hand model to the sensor data. Similar to other tech-

niques [Oikonomidis et al., 2011,Schroder et al., 2014], we employ a simple (sphere capped)

cylinder model as a geometric template; see Figure 4.10. We optimize for 26 degrees of free-

dom, 6 for global rotation and translation and 20 for articulation. Like in [Melax et al., 2013],

the model can be quickly adjusted to the user by specifying global scale, palm size and “n-

ger lengths. In most scenarios, it is suf“cient to perform a simple uniform scaling of the

model. Such a coarse geometry is suf“cient for hand tracking, as the signal-to-noise ratio

for commercially available RGBD sensors is low for samples on the “ngers when compared

to the size of a “nger. Furthermore, the computation of closest-point correspondences can

be performed in closed form and in parallel, which is essential for real-time performance.

The hand•s palm region may be better approximated by geometries other than a cylinder,

but we found using only cylinder primitives to work well for tracking in terms of accuracy

and ef“ciency. Furthermore, it simpli“ed the implementation as the same correspondence

computation routine can be used for all primitives in the model. While the geometry of the

model used for tracking remains coarse, our algorithm computes joint angles (including rigid

transformation) in the widespread BVH motion sequence format; these can be used to drive a

high-resolution skinned hand rig as illustrated in Figure 4.10-d.

Preprocessing

The silhouette image Ss is not directly available from the sensor and needs to be computed.

This labeling can be obtained by extracting the sensor color image and performing a skin color

segmentation [Oikonomidis et al., 2012,Schroder et al., 2014], or can be obtained directly from

depth images by performing a classi“cation with random decision forests [Tompson et al.,

2014]. Another possibility is to exploit a full-body tracking algorithm [Shotton et al., 2011] and

segment the hand according to the wrist position. For gestural tracking, where the hand is

typically the closest object to the sensor [Qian et al., 2014], a black wristband can be used to

simplify segmentation by creating a gap in the depth image. Similarly to this method, in our

system the user wears a colored wristband. We “rst identify the position of the wristband in

the scene by color segmentation, then retrieve the 3D points in the proximity of the wristband

and compute the principal axis. This axis, in conjunction with the wristband centroid, is then

used to segment the hand point cloud. Any depth pixel within the hand point cloud is labelled

as belonging to the silhouette image Ss as shown in Figure 2.5.

2.3 Optimization

In this section we derive the objective functions of our model-based optimization method and

provide the rationales for our design choices. Let F be the sensor input data consisting of a

3D point cloud Xs and 2D silhouette Ss (see Figure 2.2). Given a 3D hand model M with joint

parameters � = {� 1, � 2, . . . , � 26}, we aim at recovering the pose � of the user•s hand, matching
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(a) (b) (c)

Xs

M

� M � M � •M

Figure 2.6 … Illustration of correspondences computations. The circles represent cross-sections
of the “ngers, the small black dots are samples of the depth map. (a) A con“guration that can
be handled by standard closest point correspondences. (b) Closest point correspondences to
the back of the cylinder model can cause the registration to fall into a local minimum. Note
that simply pruning correspondences with back-pointing normals would not solve this issue,
as no constraints would remain to pull the “nger towards the data. (c) This problem is resolved
by taking visibility into account, and computing closest points only to the portion •M of M
facing the camera.

the sensor input data F . To achieve this goal, we solve the optimization problem

min
�

E3D + E2D+Ewrist� �� �
Fitting terms

+ Epose + Ekin. + Etemporal
� �� �

Prior terms

, (2.1)

combining “tting terms that measure how well the hand parameters � represent the data

frame F , with prior terms that regularize the solution to ensure realistic hand poses. For

brevity of notation we omit the arguments � ,Xs,Ss of the energy terms. We “rst introduce

the “tting terms and present our new solution to compute tracking correspondences. Then

we discuss the prior terms and highlight their bene“ts in terms of tracking accuracy and

robustness. More details on the implementation of the optimization algorithm will be given in

Section 2.4 and the Section 2.7.
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(a) (b) (c)

c1 c1 c1

c2

c2 c2

Figure 2.7 … Illustration of the impact of self-occlusion in correspondences computations.
(a) The “nger c2 initially occluded by “nger c1 becomes visible, which causes new samples
to appear. (b) Closest correspondences to the portion of the model visible from the camera
do not generate any constraints that pull c2 toward its data samples. This is the approach
in [Wei et al., 2012], where these erroneous matches are then simply pruned. (c) Our method
also considers front-facing portions of the model that are occluded, allowing the geometry to
correctly register.

2.3.1 Fitting Energies

Point cloud alignment

The term E3D models a 3D geometric registration in the spirit of ICP as

E3D = � 1
�

x� Xs

�x Š � M (� )(x, � )� 1
2, (2.2)

where �·� 2 denotes the � 2 norm, x represents a 3D point of Xs, and � M (� )(x, � ) is the projection

of x onto the hand model M with hand pose � . Note that we compute a sum of absolute

values of the registration residuals, not their squares. This corresponds to a mixed � 2/ � 1 norm

of the stacked vector of the residuals. For 3D registration such a sparsity-inducing norm has

been shown to be more resilient to noisy point clouds containing a certain amount of outliers

such as the ones produced by the Creative sensor (Figure 2.2). We refer to [Bouaziz et al., 2014]

for more details.

3D correspondences

The 3D registration term involves computing the corresponding point y = � M (� )(x, � ) on

the cylinder model M for each sensor point x � Xs. In contrast to standard closest point

search, we de“ne the correspondence y as the closest point on the front-facing part •M of

M . This includes parts of the model that are oriented towards the camera but occluded

by other parts. In our experiments we learned that this seemingly simple extension proved

absolutely essential to obtain high-quality tracking results. Only considering model points that

are visible from the sensor viewpoint, i.e., matching to the rendered model, is not suf“cient for

handling occlusions or instances of disappearing and reappearing sensor data; see Figure 2.6
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Figure 2.8 … Correspondence computations. The top row shows the strategy used in [Qian
et al., 2014] adapted to our gradient-based framework according to the formulation given
in [Wei et al., 2012]. The bottom row shows the improved accuracy of our new approach.

and Figure 2.7.

To calculate y, we “rst compute the closest points xC of x to each cylinder C� M . Recall that

our hand model consists of sphere-capped cylinders so these closest points can be computed

ef“ciently in closed form and in parallel for each x � Xs. We then identify back-facing points

using the dot product of the cylinder surface normal n at xC and the view ray vector v. For

ef“ciency reasons, we use a simpli“ed orthographic camera model where the view rays are

constant, i.e., v = [0 0 1]T . If a point on a cylinder is back-facing ( nT v > 0), we project x onto the

cylinder•s silhouette contour line from the camera perspective, whose normals are orthogonal

to v.

A different strategy to address visibility issues has been introduced in [Qian et al., 2014].

These methods propose an energy that penalizes areas of the model falling in front of the

data, which is then optimized using particle swarms. This energy can be integrated into our

optimization following the formulation in [Wei et al., 2012, Eq. 15]. However, such an energy

is prone to create local minima in gradient-based optimization, as illustrated in Figure 2.8.

Here the thumb has dif“culty entering the palm region, as it must occlude palm samples

before reaching its target con“guration. Our correspondence search avoids such problems.

Furthermore, note how [Qian et al., 2014] follows a hypothesize-and-test paradigm where

visibility constraints in the form of ray-casting are easy to include. As discussed in [Ganapathi

et al., 2012], such constraints are much more dif“cult to include in iterative optimization

techniques like ours. However, our front-facing correspondences computation provides a

simple and elegant way to deal with such shortcomings.
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Ss

Ss

silhouette w/o silhouette w/ silhouette

Figure 2.9 … Our 2D silhouette registration energy is essential to avoid tracking errors for
occluded parts of the hand. When no depth data is available for certain parts of the model, a
plausible pose is inferred by ensuring that the model is contained within the sensor silhouette
image Ss.

Silhouette alignment

The 3D alignment energy E3D robustly measures the distance between every point in the 3D

point cloud Xs to the tracked model M . However, as hands are highly articulated, signi“cant

self-occlusions are common during tracking. Such self-occlusions are challenging, because

occluded parts will not be constrained when only using a 3D alignment energy. For this reason,

we use a 2D silhouette term E2D that models the alignment of the 2D silhouette of our rendered

hand model with the 2D silhouette extracted from the sensor data as

E2D = � 2
�

p� Sr

�p Š � Ss(p, � )� 2
2, (2.3)

where p is a 2D point of the rendered silhouette Sr , and � Ss(p, � ) denotes the projection of

p onto the sensorsilhouette Ss. Figure 2.9 shows why the silhouette term is crucial to avoid

erroneous poses when parts of the model are occluded. Without the silhouette energy, the

occluded “ngers can mistakenly move to wrong locations, since they are not constrained by

any samples in the depth map.

2D correspondences

In Equation 2.3, we compute the silhouette image Sr by “rst rendering the hand model M from

the viewpoint of the sensor, caching the bone identi“er and the 3D location associated with
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Figure 2.10 … An illustration of the PCA pose-space used to regularize the optimization. Black
dots denote the samples of the data base. High likelihood poses are located nearby the
mean of the latent space (dark red). The eigenvalues of the PCA de“ne the metric in the
low-dimensional space, skewing it in certain directions. Poses that, according to this metric,
are far from the mean are likely to be unnatural and will be penalized in the optimization.

each pixel in a texture. The projection function � Ss(p, � ) to compute the closest corresponding

point to the sensor silhouette is evaluated ef“ciently using the 2D distance transform of Ss.

We use the linear time algorithm of [Felzenszwalb and Huttenlocher, 2012] and store at every

pixel the index to the closest correspondence.

Wrist alignment

The inclusion of the forearm for hand tracking has been shown bene“cial in [Melax et al.,

2013]. Our wrist alignment energy encodes a much simpli“ed notion of the forearm in the

optimization that enforces the wrist joint to be located along its axis.

Ewrist = � 3�� 2D(k0(� )) Š � � (k0(� ))� 2
2, (2.4)

Minimizing this energy helps preventing the hand from erroneously rotating/”ipping during

tracking; an occurrence of this can be observed at Video1 [04:03] 2. Here k0 is the 3D position

of the wrist joint, and � is the 2D line extracted by PCA of the 3D points associated with the

wristband; see Figure 2.5. Note that � 2D causes residuals to be minimized in screen-space,

therefore the optimization of this energy will be analogous to the one of Equation 2.3. We

optimize in screen space because, due to occlusion, we are only able to observe half of the

wrist and this causes its axis to be shifted toward the camera.

2Please “nd the accompanying Video1 at http://lgg.ep”.ch/publications/2015/Htrack_ICP/new_video.mp4 .
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Figure 2.11 … An illustration of the energies involved in our pose-space prior. For illustration
purposes the full dimensional parameter vector � � R3, while latent space variable �� � R2.
The PCA optimization in [Schroder et al., 2014] constrains the pose parameters � to lie on
the subspace P. Conversely, we penalize the distance of our pose from P (Equation 2.5);
simultaneously, we ensure our pose remains likely by preventing it from diverging from the
mean of the distribution (Equation 2.6).

2.3.2 Prior Energies

Minimizing the “tting energies alone easily leads to unrealistic or unlikely hand poses, due to

the de“ciencies in the input data caused by noise, occlusions, or motion blur. We therefore

regularize the registration with data-driven, kinematic, and temporal priors to ensure that

the recovered hand poses are plausible. Each of these terms plays a fundamental role in the

stability of our tracking algorithm, as we illustrate below.

Pose Space Prior (data-driven)

The complex and highly coupled articulation of human hands is dif“cult to model directly with

geometric or physical constraints. Instead, we use a publicly available database of recorded

hand poses [Schroder et al., 2014] to create a data-driven prior Epose that encodes this coupling.

We construct a low-dimensional subspace of plausible poses by performing dimensionality

reduction using PCA (see Figure 2.10). We enforce the hand parameters � to lie close to this

low-dimensional linear subspace using a data term Epose = Eprojection + Emean. To de“ne the

data term, we introduce auxiliary variables �� , i.e, the PCA weights, representing the (not

necessarily orthogonal) projection of the hand pose � onto the subspace; see Figure 2.11.

The projection energy measures the distance between the hand parameters and the linear

subspace as

Eprojection = � 4�( � Š µ ) Š � P �� � 2
2, (2.5)
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Figure 2.12 … Beyond favoring natural poses, the data prior term also positively affects conver-
gence speed. Top: With the same number of iterations, only with activated data term does the
model fully register to the scan. The illustration below shows how the same “nal state requires
signi“cantly fewer iterations with the data term.

where µ is the PCA mean. The matrix � P , i.e., the PCA basis, reconstructs the hand posture

from the low-dimensional space. To avoid unlikely hand poses in the subspace, we regularize

the PCA weights �� using an energy

Emean = � 5�� �� � 2
2. (2.6)

� is a diagonal matrix containing the inverse of the standard deviation of the PCA basis. Our

tracking optimization is modi“ed to consider the pose space by introducing the auxiliary

variable �� and then jointly minimizing over � and �� . The difference between our approach

and optimizing directly in the subspace is further discussed in Section 2.7. Note how the

regularization energy in Equation 2.6 helps the tracking system recover from tracking failures.

When no sensor constraints are imposed on the model, the optimization will attempt to push

the pose towards the mean … a statistically likely pose from which tracking recovery is highly
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depth image without PCA with PCA

Figure 2.13 … Our pose-space regularization using a PCA prior ensures that a meaningful pose
is recovered even when signi“cant holes occur in the input data.

effective.

Figure 2.13 illustrates how the PCA data prior improves tracking by avoiding unlikely poses, in

particular when the input data is incomplete. We found that even when data coverage is suf“-

cient to recover the correct pose, the data term improves the convergence of the optimization

as illustrated in Figure 2.12. Figure 2.14 shows how our regularized projective PCA formulation

outperforms the direct subspace optimization proposed in previous work.

Kinematic Prior

The PCA data term is a computationally ef“cient way of approximating the space of plausible

hand poses. However, the PCA model alone cannot guarantee that the recovered pose is

realistic. In particular, since the PCA is symmetric around the mean, “ngers bending back-

wards beyond the physically realistic joint angle limits are not penalized by the data prior.

Similarly, the PCA model is not descriptive enough to avoid self-intersections of “ngers. These

two aspects are addressed by the kinematic prior Ekinematic = Ecollision + Ebounds . Under the

simplifying assumption of a cylinder model, we can de“ne an energy Ecollision that accounts

for the inter-penetration between each pair of (sphere-capped) cylinders:

Ecollision = � 6
�

{i , j }
�(i , j )(d (ci ,cj ) Š r )2, (2.7)

where the function d (·, ·) measures the Euclidean distance between the cylinders axes ci and

cj , and r is the sum of the cylinder radii. �(i , j ) is an indicator function that evaluates to one if

the cylinders i and j are colliding, and to zero otherwise. The top row of Figure 2.15 shows

how this term avoids interpenetrations of the “ngers.

To prevent the hand from reaching an impossible posture by overbending the joints, we limit

the joint angles of the hand model:

Ebounds = � 7
�

� i � �
� (i )(� i Š � i )

2 + �(i )(� i Š � i )
2, (2.8)
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89%, #PCA=4 96%, #PCA=6 99%, #PCA=9 79%, #PCA=2

� 4 = 108 � 4 = 108 � 4 = 108 � 4 = 102

Figure 2.14 … Optimizing directly in the PCA subspace [Schroder et al., 2014] can lead to inferior
registration accuracy. We replicate this behavior by setting � 4 in Equation 2.5 to a large value.
Even when increasing the number of PCA bases to cover 99% of the variance in the database,
the model remains too stiff to conform well to the input. Our approach is able to recover the
correct hand pose by optimizing for projection distances even with a very limited number of
bases (right).

where each hand joint is associated with conservative bounds
�
� i , � i

�
. For the bounds, we use

the values experimentally determined by [Chan and Dubey, 1995]. � (i ) and � (i ) are indicator

functions. � (i ) evaluates to one if � i < � i , and to zero otherwise. � (i ) is equal to one if � i > � i ,

and zero otherwise. The bottom row of Figure 2.15 illustrates the effect of the joint angle

bounds.

Temporal Prior

A common problem in particular with appearance-based methods are small-scale tempo-

ral oscillations that cause the tracked hand to jitter. A standard way to enforce temporal

smoothness is to penalize the change of model parameters � through time, for example, by

penalizing a quadratic energy accounting for velocity � �� � 2 and acceleration � �̈ � 2 [Wei et al.,

2012]. However, if we consider a perturbation of the same magnitude, it would have a much

greater effect if applied at the root, e.g., global rotation, than if applied to an element further

down the kinematic tree, e.g., the last phalanx of a “nger. Therefore, we propose a solution that

measures the velocity and acceleration of a set of points attached to the kinematic chain. We

consider the motion of vertices k of the kinematic chain K (Figure 4.10) and build an energy

penalizing the velocity and acceleration of these points:

Etemporal = � 8
�

ki � K
� �k(� )� 2

2 + � 9
�

ki � K
� k̈( � )� 2

2. (2.9)
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Figure 2.15 … Kinematic priors augment the data prior to account for inconsistencies in the
pose space. The collision term avoids self-collisions (top row), while the term for joint angle
bounds avoids overbending of the “nger joints.

Figure 2.16 illustrates how the temporal prior reduces jitter and improves the overall robustness

of the tracking; see also Video1 [01:20].

2.4 Implementation

In this section we provide more details on the implementation of our optimization algorithm.

The derivation of the necessary gradients and Jacobians is given in the Section 2.7.

Optimization

The optimization of the tracking energy of Equation 2.1 over the pose � is performed by

solving the non-linear least squares problem with a Levenberg-Marquardt approach. The

assumption is that a current estimate of � is known from which we then compute an update.

More speci“cally, the high acquisition speed of the sensing device allows us to employ the

optimized parameters from the previous time frame as the starting estimate. We then itera-

tively approximate the energy terms using Taylor expansion and solve a linear system to get

the update � � at each iteration (see appendix). As our algorithm achieves 60 fps tracking, the

previously reconstructed pose is of suf“ciently high quality allowing our solver to converge

within seven iterations.
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Figure 2.16 … The effect of the temporal prior. The graph shows the trajectory of the y-
coordinate of the “ngertip over time as the index “nger is bend up and down repeatedly.
The temporal prior reduces jitter, but also helps avoiding tracking artifacts that arise when
fragments of data pop in and out of view.

Initialization

As a user enters the scene our method is initialized by the “ngertip detection and “tting

from [Qian et al., 2014]. Other appearance-based methods could be used for initialization as

well [Tompson et al., 2014]. We also re-initialize the tracking in case a severe tracking failure is

detected using the method of [Wei et al., 2012]. Such re-initialization occurs rarely (e.g. less

than 0.5% of the frames in the sequence of Figure 2.22).

Rigid bias

To improve the convergence of our solver in case of fast motion, we “rst perform the optimiza-

tion in Equation 2.1 for the rigid motion only by optimizing for the root of the kinematic chain.

As shown in Figure 2.17, optimizing “rst for the rigid motion prior to the full pose estimation

leads to improved robustness of the tracking.
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Figure 2.17 … During fast motion, optimizing directly for a fully articulated hand can lead to
incorrect correspondences and cause loss of tracking (middle row). By compensating for the
rigid motion ahead of solving for joint angles, our system can better capture fast movements
(bottom row).

Parameters

For all our results we “x our parameters to � 1 = � 2 = � 5 = 1, � 4 = 103, � 3 = � 6 = � 7 = 108,

� 8 = � 9 = 3. We determined these weights empirically by re-tracking multiple sequences with

different sets of parameters. Our system was tested on an Intel Core i7 4GHz with NVIDIA

GTX980 GPU running Ubuntu 12.02 . To run on a 60Hz RGBD device such as the PrimeSense

Carmine 1.09 or the Creative Gesture Camera, we perform 1 rigid iteration and 7 full iterations,

at 1.5ms per iteration. We perform closed form closest point correspondences and Jacobian

computation for the “tting energies on the GPU. The number of iterations can be easily

adapted to run on the new Intel RealSense 3D Camera (F200) at 120Hz or at even higher frame

rates on future devices.

2.5 Evaluation

We refer to Video1 [06:20]to best appreciate the real-time tracking performance of our method.

Here we analyze its performance by providing a comparison to several state-of-the art solu-

tions.

Dexter-1 Dataset [SRS*14]

Figure 2.18 shows a quantitative comparison with several existing methods on a publicly

available data set acquired at 25 Hz. As the graph illustrates, our solution clearly outperforms

the method of [Tang et al., 2014] that uses regression forest classi“ers in an appearance-
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Figure 2.18 … We quantitatively evaluate our algorithm on the Dexter-1 dataset from [Sridhar
et al., 2013]. The measurements report the root mean square errors of “ngertip placements.
The acquisition setup consists of several calibrated video cameras and a single depth camera.
For our results and the method of [Tang et al., 2014], only the depth image is used for tracking,
while the algorithms of Sridhar and colleagues also use the video streams. The blue, green,
and purple bars are reproduced from [Sridhar et al., 2014]. For our algorithm we report results
without (red) and with (orange) reinitialization.

based approach to estimate hand poses. We also signi“cantly improve upon the gradient-

based optimization methods of [Sridhar et al., 2013,Sridhar et al., 2014] that, in addition to

the depth information, use RGB data from “ve additional video cameras. As the dataset is

acquired at 25 Hz, the performance of our algorithm (red) is suboptimal. In particular, in

a single frame “ngers are occasionally displaced by 2 to 3 times their radii, thus corrupting

ICP correspondences. By re-initializing with “nger detection as in [Qian et al., 2014] our

performance considerably improves, as shown in the “gure.

Subspace ICP [SMRB14]

Figure 2.19 shows a comparison to the model-based approach of [Schroder et al., 2014]. The

recorded sequences were directly processed by the authors and employed to pose our cylinder

model for ease of comparison. As the “gure illustrates, our method clearly outperforms

this previous work. A key difference is that they optimize directly in a PCA subspace, which

tends to over-constrain the solution, while we introduce a PCA data term as a regularizer,

which preserves the full expressiveness of the tracking model. In addition, we introduce

collision handling, apply robust norms for automatic outlier detection, and employ a more

advanced correspondence search that handles self-occlusions. In combination, these factors

lead to substantial improvements in tracking accuracy and robustness without compromising

computational ef“ciency.
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Figure 2.19 … A few comparison frames illustrating the difference in performance of our method
compared to [Schroder et al., 2014] (results provided by the authors of that paper). From left
to right we can observe problems related to: correspondences to the back of the model, lack of
silhouette energy (3 times) and loss of tracking due to fast motion.

Convex body solver [MKO13]

We compare to this algorithm by employing the precompiled binaries from the Intel Perceptual

Computing SDK. We modifed the demo application to save the recorded depth/color frames

to disk while tracking. We then re-tracked this data from scratch using our technique. As

illustrated in Video1 [05:20], as well as Figure 2.20, our method offers a substantial increase

in tracking robustness compared to [Melax et al., 2013]. This can be attributed to any of the

improvements we presented, but it is dif“cult to quantitatively identify the causes, because no

control on tracking parameters nor source code is given. Their approach computes closest

correspondences to the entire model, therefore not explicitly handling occlusion. The authors

also proposed a technique to ensure that the model is fully contained in the 3D convex hull of

the data. Note that in camera space, this amounts to constraints similar to the ones enforced

by our 2D registration (Equation 2.3), except that the distance transform would be computed

from the 2D convex hull of the silhouette image. Figure 2.20 (Frame 448) illustrates how our

2D registration better constrains feasible solutions. While in [Melax et al., 2013] correlation

between “ngers is manually introduced as a grasping bias, our optimization is data driven and

encodes correlation in a more principled way. As illustrated in Figure 2.20 and Video1 [05:20],
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Figure 2.20 … Comparison to the method of [Melax et al., 2013]. The full sequence can be
seen in the Video1 [05:20]. We highlight a few frames that are not resolved correctly by this
method, but that can be handled successfully with our solution. The last frame shows the
better geometric approximation quality of the convex body model used in [Melax et al., 2013]
compared to our simpler cylinder model.

this approach often loses tracking during complex motion. However, it is sometimes capable

of recovering by sampling and then evaluating a reduced set of poses, with an approach

that is similar in spirit to [Oikonomidis et al., 2011]. One advantage of their method is the

higher geometric “delity of their convex bodies hand model compared to our cylinder model.

Furthermore, our evaluation demonstrated how their more precise representation of the

hand•s Thenar eminence, as well as the thumb articulation, can result in more natural “tting

in these regions.

Convolutional Networks [TSLP14]

Figure 2.22 shows a quantitative comparison with the appearance-based method of [Tompson

et al., 2014] on a dataset provided by the authors of that paper. Overall, the tracking quality

is comparable, with a somewhat lower average error for our method. However, our solution

avoids many of the high-error peaks of [Tompson et al., 2014] where tracking is lost completely.

An additional advantage of our approach in comparison to any of the existing appearance-

based methods is that we can handle more complex interactions of two hands, since such

con“gurations are not part of the training data sets of existing methods; see Figure 2.21.

Limitations

Single-camera depth acquisition yields incomplete data and as such the pose reconstruction

problem is inherently ill-posed. Tracking errors can occur in certain situations as explained

above when insuf“cient data is acquired due to occlusions or fast motion. Similarly, the reso-
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Figure 2.21 … Developing robust model-based tracking is essential to enable tracking of hands
interacting with each other or with other objects in the environment. Here we illustrate that
for our method tracking accuracy is not signi“cantly affected even though we are not modeling
the second hand. Note that such motion cannot be tracked successfully by appearance-based
methods such as [Tompson et al., 2014].
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Figure 2.22 … Quantitative comparison to [Tompson et al., 2014]. The graph shows the average
root mean square tracking error w.r.t. ground truth across 2440 frames. Some frames where
the accuracy of the two methods differs signi“cantly are highlighted in the bottom row.

lution of the sensor limits tracking accuracy. As shown in Figure 2.23, when geometric features

become indiscriminate, our registration approach fails. Integrating color and shading infor-

mation could potentially address this issue [de La Gorce et al., 2011]. While our current system

requires the user to wear a wristband for detection and stabilization, this could be replaced by

automatic hand labeling, e.g. using random decision forest classi“ers as in [Tompson et al.,

2014].

Our cylinder model proved adequate for the data quality of current commodity sensors, but

is overall limited in geometric accuracy, and hence might not scale with increasing sensor

resolution. Also, in our current implementation the model needs to be manually adapted

to the user through simple scaling operations. Without such adaptation, tracking accuracy

degrades as shown in Figure 2.24. This user-speci“c adaption could be automated [Taylor

et al., 2014] and potentially even performed simultaneously with the real-time tracking as

recently proposed for face tracking [Bouaziz et al., 2013].

The PCA model used in the prior energy is an ef“cient, but rather simplistic representation of
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Figure 2.23 … Our algorithm relies on the presence of salient geometric features in the depth
map. Challenging sequences like a rotating “st lack such features when acquired with current
commodity depth sensors, which can result in loss of tracking.

the pose space. We currently do not consider the temporal order in which the hand poses of

the database have been acquired, which could potentially be exploited for more sophisticated

temporal priors.

2.6 Conclusions

We have introduced a new model-based approach to real-time hand tracking using a single low-

cost depth camera. This simple acquisition setup maximizes ease of deployment, but poses

signi“cant challenges for robust tracking. Our analysis revealed that a major source of error

when tracking articulated hands are erroneous correspondences between the hand model

and the acquired data, mainly caused by outliers, holes, or data popping in and out during

acquisition. We demonstrate that these problems can be resolved by our new formulation of

correspondence search. In combination with suitable 2D/3D registration energies and data-

driven priors, this leads to a robust and ef“cient hand tracking algorithm that outperforms

existing model- and appearance-based solutions.

By fully disclosing our source code and data we ensure that our method and results are

reproducible, as well as facilitate future research and product development.

We are investigating a technique for ef“cient automatic personalization of the tracking model

to the user, in order to facilitate a more seamless usage of our system across different subjects.

Other examples of future efforts are robust two-hand tracking with object interactions, combi-

nations of hand tracking with full body tracking, and integrating our hand tracking solution to

new interfaces and real-time applications.
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Figure 2.24 … When tracking with an uncalibrated model, tracking correspondences can map
to data belonging to erroneous portions of the model. In the “gure, the index “nger remains
attached to samples associated with the thumb.

2.7 Implementation Details

2.7.1 Projective v.s. subspace PCA

In Equation 2.6, minimizing Epose over �� has a closed form solution:

�� = (� 5� 2 + � 4I) Š1(� 4� T
P (� Š µ )).

We can therefore rewrite our data-driven energy only as a function of � as

Epose = � 4�( � Š µ ) Š � P M� T
P (� Š µ )� 2

2,

where M = � 4(� 5� 2 + � 4I )Š1. Our formulation does not only allow the solution to stay close

to the pose space, but also penalizes unlikely poses replacing the conventional orthogonal

projection matrix � P � T
P by a matrix � P M� T

P taking into account the PCA standard deviation.

Note that when � 5 = 0 we retrieve the orthogonal projection � P � T
P .

2.7.2 Jacobians

Perspective projection Jacobian

The Jacobian of the perspective projection is a [2 × 3] matrix depending from the focal length

of the camera f = [ f x , f y ] and the 3D position x at which it is evaluated [Bouaziz et al., 2014]:

Jpersp(x) =

	
f x /x z 0 Šxx fx /x 2

z

0 f y/x z Šxy f y/x 2
z
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Skeleton Jacobian

The skeleton Jacobian Jskel(x) is a [3 × 26] matrix. For each constraint, the bone identi“er

b = id (x) associated to each 3D point x determines the affected portion of the kinematic chain.

That is, it identi“es the non-zero columns of Jskel(x). As discussed in [Buss, 2004], the i-th

column of Jskel(x) contains the linearization of i-th joint about x.

2.7.3 Approximation using linearized function.

To approximate the following energies, we approximate E = � f(x)� 2
2 by linearizing f(x) as

f(x + �x)| x � f(x) + J(x)�x.

The approximation is then expressed as

Ē = � f(x) + J(x)�x� 2
2. (2.10)

Joint bounds

The joint bounds energy can be written as

Ēbound = � 7
�

� i � �
�(i )(� � i + � i Š � i )

2+

� (i )(� � i + � i Š � i )
2

Temporal coherence

To compute the velocity �k(� ) and the acceleration k̈(� ) of a point k attached to the kinematic

chain, we use “nite differences. The linearization of the temporal energy becomes

Ētemporal = � 8
�

k� K
�J skel(k)� � + (k Š kt Š1)� 2

2

+ � 9
�

k� K
�J skel(k)� � + (k Š 2kt Š1 + kt Š2)� 2

2,

where kt Š1 and kt Š2 are the position of such points from the two previously optimized frames.

Data-driven (PCA)

The data-driven projection energy can be rewritten as

Ēpose = � 4
�
� (I Š � P M� T

P )(� � + � Š µ )
�
� 2

2 .
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2.7.4 Approximation using Linearized � 2 Distance.

To approximate the following energies, we “rst reformulate the quadratic form E = � f(x)� 2
2 as

E = (�f(x)� 2)2. We then linearize the � 2 norm �f(x)� 2 as

�f(x + �x)� 2|x � � f(x)� 2 +
f(x)T

�f(x)� 2
J(x)�x.

The approximation is then expressed as

Ē =
�
�f(x)� 2 +

f(x)T

�f(x)� 2
J(x)�x

 2

.

When the energy is of the form E = � x Š � (x)� 2
2 where � (x) is a projection operator, Bouaziz et

al. [Bouaziz et al., 2012] showed that f(x)T J(x) = f(x)T . In this case, the approximate energy can

be simpli“ed as

Ē =
�
�f(x)� 2 +

f(x)T

�f(x)� 2
�x

 2

.

Contrary to the approximation in Equation 2.10, the Jacobian of the projection function does

not need to be known. This formulation is useful as the approximation in the equation above

only needs to evaluate the projection function and therefore allows to use arbitrarily complex

projection functions.

Point cloud alignment

We linearize the point cloud alignment energy as

Ē3D = � 1
�

x� Xs

� re(nT (Jskel(y)� � + d ))2,

where y = � M (x, � ) is the closest point from x on the hand model M with hand pose � . n is the

surface normal at y, and d = (y Š x). As we minimize the � 2 norm we use a weight � re = 1/ �d� 2

in an iteratively re-weighted least squares fashion.

Silhouette alignment

The silhouette energy is expressed in screen space, and therefore employs the perspective

projection Jacobian Jpersp(x), where x is the 3D location of a rendered silhouette point p.

Similarly to the point cloud alignment the linearization can be expressed as

Ē2D = � 2
�

p� Sr

(nT (Jpersp(x)Jskel(x)� � + d ))2,

where d = (p Š q) with q = � Ss(p, � ), and n is the 2D normal at the sensor silhouette location q.
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ni
xi

n j
x j

xi ,x j

Figure 2.25 … (left) Collision constraints de“nition, deepest penetration points marked as
xi ,x j . (right) When the collision energy is minimized in isolation the penetration points are
co-located.

Collision

Figure 2.25 illustrates the necessary notation with a 2D example, where xi and x j are the

end-points of the shortest segment between the two cylinders axes. The linearized energy is

de“ned as

Ēcoll. = � 6
�

{i , j }
�(i , j )

�
nT

i

�
(Jskel(xi ) Š Jskel(x j ))� � + d

�� 2

where ni is the surface normal at xi (as shown in Figure 2.25), and d = (xi Š x j ).

2.7.5 Non-Linear Least Squares Optimization

To solve our optimization problem we use a Levenberg-Marquardt approach. We iteratively

solve Equation 2.1 using the approximate energies described in Section 2.7.2 through Section

2.7.4 leading to a damped least squares minimization

min
� �

Ē3D + Ē2D + Ēwrist + Ēpose + Ēkin. + Ētemp. + Ēdamp ,

and update our hand pose using the update � = � + � � . Note that since our energies are

written in the form:

� i Ēi = � i �J i � � Š ei �
2
2,

our solve can be re-written as

� � =
�
� i J

T
i Ji

� Š1 �
� i J

T
i ei

�
= 0. (2.11)

To stabilize the optimization, we introduce a damping energy Ēdamp = ��� � � 2
2, where � = 100.

2.7.6 CPU/GPU Optimization

Our technique elegantly de-couples the components of our optimization on CPU and GPU.

With regards to Figure 2.4 only large-scale and trivially parallelizable tasks, like the computa-

tion of constraints associated with 2D/3D ICP correspondences are performed on GPU, while

all others run ef“ciently on a single CPU thread. In particular, the inversion in Equation 2.11 is

performed on CPU by Cholesky factorization (Eigen3). As the “nal solve is performed on CPU,
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we designed our optimization to minimize memory transfers between CPU/GPU. First of all,

note that although at each iteration we need to render an image of the cylinder model, the

texture is already located on the GPU buffers. Furthermore, although the large ( � 20k × 26)

Jacobian matrices associated with E3D and E2D are assembled on the GPU, a CuBLAS kernel is

used to compute the much smaller (26 × 26, 26× 1) matrices JT
i Ji and JT

i ei . Only these need to

be transferred back to CPU for each solver iteration.
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3 Sphere-Meshes for Real-Time Hand
Modeling and Tracking

Figure 3.1 … Three side-by-side comparisons of tracking performance from the HANDY/ TEASER

sequence. Our model allows us to obtain much higher tracking quality. Tracking at a “ner scale
is instrumental to prevent tracking failure. The whole sequence can be seen in Video2 [03:53].

This chapter is based on the following publication:

TKACH A., PAULY M., TAGLIASACCHI A.: Sphere-meshes for real-time hand modeling and

tracking. In ACM Trans. Graph. (Proc. SIGGRAPH Asia) (2016).

Abstract

Modern systems for real-time hand tracking rely on a combination of discriminative and

generative approaches to robustly recover hand poses. Generative approaches require the

speci“cation of a geometric model. In this chapter we propose the use of sphere-meshes

as a novel geometric representation for real-time generative hand tracking. How tightly this

model “ts a speci“c user heavily affects tracking precision. We derive an optimization to non-

rigidly deform a template model to “t the user data in a number of poses. This optimization

jointly captures the user•s static and dynamic hand geometry, thus facilitating high-precision

registration. At the same time, the limited number of primitives in the tracking template

allows us to retain excellent computational performance. We con“rm this by embedding our

model in an open source real-time registration algorithm to obtain a tracker steadily running

at 60Hz. We demonstrate the effectiveness of our solution by qualitatively and quantitatively
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evaluating tracking precision on a variety of complex motions. We show that the improved

tracking accuracy at high frame-rate enables stable tracking of extended and complex motion

sequences without the need for per-frame re-initialization. To enable further research in the

area of high-precision hand tracking, we publicly release our source code and evaluation

datasets.

3.1 Introduction

The main goal of this chapter is to explore novel tracking models that strike an optimal balance

between accuracy and performance.

More speci“cally, we propose a geometric model that more accurately captures the user•s hand

geometry, while retaining the ability to answer registration queries in closed form with very

high ef“ciency. In Figure 3.2 and Video2 [03:53] 1 we illustrate the importance of employing a

tracking template that strikes this delicate balance.

Implicit vs. explicit templates

In modern digital production the de-facto standard is to represent objects by a surface mesh

of their boundary (e.g. triangle or quad meshes). Fast rendering and easy direct manipula-

tion make explicit surface representation attractive for many applications. However, unlike

implicit models [Bloomenthal et al., 1997], explicit representations cannot ef“ciently answer

queries such as the distance from a point to the object•s boundary, or whether a point lies

inside/outside the model [Botsch et al., 2010, Ch.1]. In tracking applications these queries play

a fundamental role, as the optimization attempts to “nd con“gurations where the average

1Please “nd the accompanying Video2 at http://lgg.ep”.ch/publications/2016/HModel/video.mp4 .

Figure 3.2 … (left) Tracking when the model from [Tagliasacchi et al., 2015] is used without
proper coarse scale calibration. (middle) A roughly manually calibrated model can help
increasing the “tting “delity, but tuning becomes increasingly dif“cult with more degrees of
freedom. (right) The proposed automatically calibrated model.
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S S
c1

r 1

c2

r 2

Figure 3.3 … The sphere-mesh skeletonS identi“es sphere positions and radii. The surface
of the object is obtained as the convex-hull of the spheres on the vertices of the skeleton.
Sphere-meshes can be rendered through GPU ray-tracing, or by meshing the zero-crossing of
their implicit function; see Equation 3.1.

distance from model to data is minimized. Similarly, a tracker should prevent the model from

assuming implausible con“gurations, for example by preventing self-intersections as mea-

sured by inside/outside predicates. For all these reasons, and as demonstrated by compelling

results in rigid [Newcombe et al., 2011] and non-rigid [Newcombe et al., 2015] reconstruction,

implicit models are highly suitable for registration applications.

To address the challenges of real-time registration, we propose to employ a hybrid model that

combines the advantages of explicit and implicit representations.

Hybrid sphere-mesh templates

The model we propose in this chapter is a variant of a convolution surface [Bloomenthal and

Shoemake, 1991]. Its fundamental building blocks are illustrated in Figure 3.3. The surface is

de“ned as the zero iso-level of the scalar function

� (x) = min
c� S

B(x|c,r (c)) (3.1)
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Figure 3.4 … (left) The skeletonS parametrizes the sphere-mesh through vertex positions
and radii. In our template, articulated components are shown in dark green while ”exible
components in purple. (right) Calibration instantiates our template by adjusting the skeletal
vertex positions and radii.

where S is a skeletal control mesh (a segment or a triangle in the simple examples of Figure 3.3),

and B is the implicit function of a sphere given its center c and radius r :

B(x|c,r ) = � x Š c� 2 Š r 2 (3.2)

The sphere centers c span the skeleton S, while the radii are a function of the position c

within an element, linearly interpolated from values r � = r (c� ) speci“ed on the skeletal mesh

vertices c� . This is indeed a hybrid model, as Equation 3.1 de“nes an implicit surface M =

{x � Rn |� (x) = 0}, while the underlying skeleton S is an explicit representation (i.e. a simplicial

complex). We generalize this construct to devise a model suitable to represent a human hand;

see Figure 3.4. Distances to M can conveniently be computed by querying distances to the

piecewise linear elements of S; see Figure 3.7.
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Tracking and calibration with sphere-meshes

Our novel tracking model has two signi“cant advantages. (1) Distance queries to M can be

executed by measuring the distance to the skeletal structure S. The number of elements in S
is signi“cantly smaller (30 in our model) than the number of polygons in a typical triangular

mesh surface representation [Thiery et al., 2013]. Therefore, distance queries can be performed

ef“ciently using a brute force approach, which leads to a simple algorithm that is trivially

parallelizable. (2) The parameterization of our hand model is compact, as we can generate a

family of models by simply adjusting positions and radii of the control skeleton vertices c� � S.

This allows adapting the model to the hand geometry of a speci“c user.

Contributions

The core contribution of this chapter is to demonstrate that sphere-meshes provide superior

hand tracking performance for single-view depth sensors. We introduce an optimization

approach that allows adapting our tracking model to different human hands with a high level

of accuracy. The improved geometric “delity compared to existing representations leads to

quanti“able reductions in registration error and allows accurate tracking even for intricate

hand poses and complex motion sequences that previous methods have dif“culties with. At

the same time, due to a very compact model representation and closed-form correspondence

queries, our generative model retains high computational performance, leading to sustained

tracking at 60Hz.

Overview

The remainder of the chapter is structured as follows: We survey related work in Section 3.2. In

Section 3.3 we describe our generative real-time hand tracking technique, which details how

our novel formulation enables ef“cient correspondence computation. Section 3.4 explains

how we build our template model from 3D scans acquired either through multi-view stereo

or from depth maps. In Section 3.5 we analyze the performance of our model for real-time

tracking and provide comparisons to the state-of-the-art. We conclude in Section 3.6 with a

discussion of current limitations and ideas for future work.

3.2 Related Work

Generative tracking models

The capsule model originally proposed by [Rehg and Kanade, 1994] has been adopted by

a number of researchers [Oikonomidis et al., 2011, Schroder et al., 2014, Fleishman et al.,

2015, Tagliasacchi et al., 2015]; see Figure 3.5(a). Such a coarse representation is suitable

to the task given the low signal-to-noise ratio in modern depth sensors, while its simplicity

enables the ef“cient closed-form computation of alignment queries. Cylinders can also
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Figure 3.5 … Several tracking templates employed by recent generative (or hybrid) real-time
hand-tracking methods. Images courtesy of (a) [Oikonomidis et al., 2011], (b) [Sridhar et al.,
2013], (c) [Taylor et al., 2016], and (d) [Melax et al., 2013].

be approximated by a small set of disconnected spheres [Qian et al., 2014], but this rough

approximation is only suf“cient for coarse-scale tracking. An alternative to cylinders and

spheres is the use of isotropic [Sridhar et al., 2013,Sridhar et al., 2015], as well as anisotropic

Gaussians [Sridhar et al., 2014]; see Figure 3.5(b). The use of surface meshes, while widespread

in other domains (e.g. face tracking [Bouaziz et al., 2013] or of”ine registration [Loper and

Black, 2014]), has been limited to the visualization of tracking performance through skinned

model animations [Tompson et al., 2014,Schroder et al., 2014]. Sharp et al. [Sharp et al., 2015]

employed mesh models for tracking in a render-and-compare framework, while the very

recent work of [Taylor et al., 2016] presents the “rst attempt towards a continuous registration

framework for tracking hands with triangular meshes; see Figure 3.5(c). Other variants of

tracking models include the union of convex bodies from [Melax et al., 2013], a convolutional

neural network capable of directly synthesizing hand depth images [Oberweger et al., 2015b],

and some initial attempts at tracking with implicit templates [Plankers and Fua, 2003]. Our

sphere-mesh model offers accuracy comparable to triangle meshes used in recent hand

trackers, while retaining a compact representation for ef“cient correspondence queries and

effective user adaptation.

Template calibration

Albrecht et al. [Albrecht et al., 2003] pioneered the creation of a realistic hand model (i.e.

bones and muscles) by aligning a template mesh to data acquired by a laser-scanned plaster

cast. Rhee et al. [Rhee et al., 2006] use a simpler setup consisting of a single color image to

identify approximate joint locations by localizing skin creases, and adapt a mesh template

to conform to its silhouette. While these methods focus on a static template, in [de La Gorce

et al., 2011] a model is roughly adapted to the user through simple bone scaling to produce

the “rst animatable template. Calibration of a cylinder model through particle swarm has

been investigated in [Makris and Argyros, 2015]. Mesh calibration techniques were proposed

in [Taylor et al., 2014] and extended in [Khamis et al., 2015], which introduces compact and
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Figure 3.6 … (a) An artist creates a hand model by “rst sketching its topological structure as a
union of spheres (ZSphere). (b) The model is then converted into a volumetric representation
and meshed (Uni“ed Skinning) to be further re“ned (c,d).

linear shape-spaces of human hand geometry. The method in [Taylor et al., 2014] shares some

similarities with our work, where the model is adjusted to jointly “t a set of depth frames, but

with a fundamental difference in the way in which geometry is represented. Our sphere-mesh

model is naturally compact, leading to straightforward calibration and tracking algorithms.

Implicit modeling

Implicit sculpting tools have recently become a viable alternative to mesh or spline-based

approaches for modeling complex geometries. This paradigm lies at the basis of the success

of the PixoLogic ZBrush product line. For articulated geometry, it is often convenient to “rst

create a coarse geometric structure analogous to the one described in Equation 3.1, a process

that PixoLogic has re-branded as ZSphere modeling; see Figure 3.6. Editing the radii and

centers of the sphere-mesh offers a natural way of editing the model, making it easy for both

humans and algorithms to calibrate. Note that any geometric model can be approximated, to

any desired precision, as a union of spheres [Tagliasacchi et al., 2016]. However, by considering

spheres that are linearly interpolated across edges, we can heavily reduce the required number

of primitives. Following this principle, [Thiery et al., 2013] recently investigated a method

to automatically generate Sphere Meshes provided a (static) input model. Extending this

work, [Thiery et al., 2016] proposed a method to “t a model to a sequence of dynamic meshes.

While seemingly related, our calibration optimization is solving a fundamentally different

problem, as in our technique a template is “xed and provided in input.

3.3 Tracking

Given a calibrated hand model M , our real-time tracking algorithm optimizes the 28 degrees

of freedom � (i.e. joint angles) so that our hand model matches the sensor input data; the

generation of a calibrated model M for a user is detailed in Section 3.4. Directly extending the
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Figure 3.7 … The computation of closest point correspondences on pill (left) and wedge (right)
elements can be performed by tracing a ray along the normal of the line (resp. plane) tangent
to the circles (resp. spheres).

open source htrack framework of [Tagliasacchi et al., 2015], we write our tracking optimization

in Gauss-Newton/Levenberg-Marquardt form:

� t = argmin
�

�

T � Ttrack

wT ET (Dt , � , � t Š1) (3.3)

where “tting energies are combined with a number of priors to regularize the solution and

ensure the estimation of plausible poses.

The energy terms Ttrack in our optimization are:

d2m each data point is explained by the model
m2d the model lies in the sensor visual-hull
pose hand poses sample a low-dimensional manifold
limits joint limits must be respected
collision “ngers cannot interpenetrate
temporal the hand is moving smoothly in time

We limit our discussion to the computational elements that need to be adapted to support

sphere-meshes, while referring the reader to [Tagliasacchi et al., 2015] for other details.

Hausdorff distance

The similarity of two geometric models can be measured by the symmetric Hausdorff distance

	 X�Y :

	 X �Y = maxx� X
�
min y� Y 	( x, y)

�

	 Y � X = maxy� Y
�
min x� X 	( x, y)

�

	 X �Y = max{d X�Y , 	 Y � X }

56



3.3. Tracking

�s�������	
�t�������	
�x�������	

Figure 3.8 … (a) A visualization of the posed kinematic frames T̄� . (b) The kinematic chain and
number of degrees of freedom for posing our tracking model. Tracking quality with (c) optimal
and (d) non-optimal kinematic transformation frames.

We therefore interpret our terms Ed2m and Em2d as approximations to the asymmetric Haus-

dorff distances 	 X�Y and 	 Y � X , where the dif“cult to differentiate max operators are re-

placed by arithmetic means, and a robust � 1 distance is used [Tagliasacchi and Li, 2016].

Data � Model

The “rst asymmetric distance minimizes the average closest point projection of each point p

in the depth frame D:

Ed2m = | D|Š1
�

p� D
�p Š � M (�) (p)� 1

2 (3.4)

Adapting this energy, as well as its derivatives, to sphere-meshes requires the speci“cation of

the projection operator � M that is described in Section 3.3.1.

Model � Data

The second asymmetric distance considers how our monocular acquisition system does not

have a complete view of the model. While the 3D location is unknown, we can penalize the

model from lying outside the sensor•s visual hull :

Em2d = | M (�)| Š1
�

x� M (�)
�x Š � D (x)� 1

2 (3.5)

In the equation above, the integral is discretized as a sum over the set of pixels obtained

through rasterization; see Section 3.3.2. The rasterization renders the model to the image

plane using the intrinsic and extrinsic parameters of the sensor•s depth camera.
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Figure 3.9 … In monocular acquisition only the front-facing part of the model should be
registered to the data. Here the camera is observing (left to right) two elements and the
occluded parts of the model are marked. Correspondences whose normals point away from
the camera are discarded, and replaced by the closest amongst silhouette correspondences or
front-facing portions of wedges.

3.3.1 Correspondences

Our correspondence search leverages the structure of Equation 3.1, by decomposing the

surface into several elementary elements Ee, where e indexes the 30 elements of our template;

see Video2 [00:58]. As illustrated in Figure 3.7, elements are classi“ed into pill and wedge

implicit primitives, with an associated implicit functions � e. Given a point p in space, the

implicit function of the whole surface can be written by evaluating the expression:

� M (p) = argmin
e=1...E

� e(p) (3.6)

Given a query point p, we can “rst compute the closest-points qe = � Ee(p) to each element

independently; within this set, the closest-point projection to the full model q = � M (p) is the

one with the smallest associated implicit function value � e(p). In a tracking session with an

average of 2500 points/frame the computation of closest-point correspondences takes 250

µs/iteration. We now describe in detail how the projection is evaluated on each element in

closed form.
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Pill correspondences: q = � pill (p)

A pill is de“ned by two spheres B1(c1,r 1) and B2(c2,r 2). By construction the closest point

correspondence lies on the plane passing through the triplet {c1,c2,p}, thus allowing us to

solve the problem in 2D; see Figure 3.7-(left). We compute the intersection point s of the ray

r(t ) = p + t n with the segment c1c2 and parametrize its location in barycentric coordinates as

s= 
c 1 + (1Š 
 )c2. If 
 � [0,1], our closest point correspondence is given by q = � L (p), that is,

the intersection of c1c2 and r(t ). If 
 < 0 or 
 > 1, then the closest point will be q = � B1(p) or

q = � B2(p), respectively.

Wedge correspondences: q = � wedge(p)

A wedge is de“ned by three spheres Bi = {ci ,r i }. Figure 3.3 illustrates how a wedge element

can be decomposed in three parts: spherical, conical , and planar elements, associated with

vertices, edges, and faces of the sphere-mesh skeleton. For the planar element P(t1,n) with

normal n and tangent t1 to B1 we compute the skewed projection s by “nding the intersection

of the ray r(t ) = p + t n with the triangle T formed by c1, c2, c3. According to the position of s

we have two possible solutions: If s lies inside the triangle T , then our footpoint is q = � P (p).

Otherwise, we use the barycentric coordinates of s in T to identify the closest pill element and

compute q = � pill (p).

Monocular Correspondences

In monocular acquisition (i.e. single sensor), an oracle registration algorithm aligns the portion

of the model that is visible from the sensor viewpoint to the available data. Hence, when

computing ICP•s closest-point correspondences, only the portion of the model currently visible

by the camera should be considered [Tagliasacchi et al., 2015]. Given the camera direction v, we

can test whether the retrieved footpoint q is back-facing by testing the sign of v·NM (q), where

the second term is the object•s normal at q. As illustrated in 2D in Figure 3.9, whenever this

test fails, there are additional candidates for closest point that must be checked: (1) the closest-

point on the silhouette of the model (e.g. p2,3,6,7), and (2) the front facing planar portions

of elements (e.g. p5). These additional correspondences for the query point are computed,

and the one closest to p becomes our front-facing footpoint q. The additional computational

cost caused by front-facing correspondences with an average of 2500 points/frame is 100

µs/iteration.

Silhouette computation

The object-space silhouette � M is a (3D) curve separating front-facing from back-facing

portions of a shape [Olson and Zhang, 2006, Sec.1]. To simplify the silhouette computation

we approximate the perspective camera of the sensor with an orthographic one. We then

offset all elements on the 2D camera plane, and perform a cross-section with this plane:
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Figure 3.10 … The image-space silhouette of the model computed by projecting the model in
the camera plane (left). The 2D object-space silhouette curves are computed separately for
palm and “ngers and then composited back together (center). The 3D object-space silhouette
(pink) is re-projected in 3D (right).

spheres are replaced with circles and planes/cylinders with segments; see Figure 3.10-(left).

We then compute an arrangement, splitting curves whenever intersection or tangency occurs;

see Figure 3.10-(center). We traverse this graph, starting from a point that is guaranteed to be

on the outline (e.g. a point on the bounding box). The traversal selects the next element as the

one whose tangent forms the smallest counter-clockwise angle thus identifying the silhouette.

Once the 2D silhouette has been computed, it can be re-projected to 3D; see Figure 3.10-(right).

Note the process described above would compute the image-space silhouette of our model.

Therefore, we apply the process to palm and “ngers separately, and merge them in a second

phase. The merge process simply checks whether vertices v � � M are contained within the

model, which means it discards those where � M (v) < 0. In our experiments the average

computation of the silhouette on the CPU takes 150 µs/iteration.

3.3.2 Rendering

Rendering the sphere-meshes in real time is not only employed for visual veri“cation of

tracking performance; e.g. Figure 3.2. The real-time tracking algorithm reviewed above

performs a 2D registration in the image plane that requires the computation of an (image-

space) silhouette. There are two alternatives for rendering a sphere-mesh model like the one

shown in Figure 3.4. One possibility is to explicitly extract the surface of individual elements
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Figure 3.11 … Each plot visualizes on they axis the portion of frames with a mean error metric
below the value reported on the x axis. We employ the HANDY/ TEASERsequence for this
purpose. Curves closer to the top-left quadrant indicate better performance.

by computing the convex hull of pairs or triplets of spheres; see Figure 3.3. While this process

would be suitable in applications where the model is “xed, it is hardly appropriate in our

scenario where we want to calibrate the model to the user. Therefore, similarly to [Thiery

et al., 2016], we ray-trace the model on the GPU. We render a unit fullscreen quad and in

the fragment shader use the camera intrinsics to compute the camera ray r(x) associated

with each pixel x. Each ray is intersected with each element of our model, and the closest

intersection point is retained. Tests are performed with the planar, conical, and spherical

primitives that compose each element. Rendering at a resolution of 320 × 240 pixels provides

the best trade-off between accuracy and performance, leading to a total rendering time of

� 3ms for visualization and � 500µs/iteration for the evaluation of Em2d .

3.4 Calibration

Our calibration procedure adapts our template model to a speci“c user from a set of N 3D

measurements {D1 . . .DN } of the user•s hand in different poses. Multiple measurements are

necessary, as it is not possible to understand the kinematic behavior by analyzing static geom-

etry, and the redundancy of information improves “tting precision. Further, in monocular

acquisition this redundancy is essential, as single-view data is highly incomplete, making the
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problem ill-posed. In our research we have experimented with datasets {Dn } acquired via

multi-view stereo (e.g. Agisoft Photoscan), as well as a single RGBD sensor. Our calibration

formulation can be employed for both acquisition modalities. Dynamic reconstruction frame-

works such as [Newcombe et al., 2015] or [Innmann et al., 2016] could also be used to generate

a dynamic template mesh over which sphere-mesh decimation could be executed [Thiery

et al., 2016]. However, as no public implementation is currently available, it is currently unclear

how well these methods would cope with loop-closure for features as small as human “ngers.

Kinematics

The rest-pose geometry of our model is fully speci“ed by two matrices specifying the set of

sphere positions C̄ and the set of radii r̄ . The geometry is then posed through the application

of kinematic chain transformations; see Figure 3.8a. Given a point p̄ on the model M at rest

pose, its 3D position after posing can be computed by evaluating the expression:

p =
�
� k � K (p̄) T̄k Tk T̄Š1

k

�
p̄ (3.7)

where T� are the posetransformations parameterized by � and � left multiplies matrices by re-

cursively traversing the kinematic chain K of point p̄ towards the root [Buss, 2004]. Each node

k of the kinematic chain is associated with an orthogonal frame T̄k according to which local

transformations are speci“ed. In most tracking systems, the frames T̄� are manually set by a 3D

modeling artist and kept “xed across users. However, incorrectly speci“ed kinematic frames

can be highly detrimental to tracking quality; see Figure 3.8(c,d) and Video2 [02:12]. Therefore,

in our formulation, the kinematic structure (i.e. the matrices T̄� ) is directly optimized from

acquired data.

Formulation

Let � n be the poseparameters optimally aligning the rest-pose template to the data frame Dn ,

and �̄ be the posture parameters representing the transformations T̄� via Euler angles.

For notational brevity, we also de“ne � n = [� n , �̄ , C̄,r̄ ]. Our calibration optimization can then

be written as:

argmin
{� n }

N�

n=1

�

T � Tcalib

wT ET (Dn ,� n ) (3.8)

We employ a set of energies Tcalib to account for different requirements. On one hand we want

a model that is a good “t to the data; on the other, we seek a non-degenerate sphere-mesh

template that has been piecewise-rigidly posed. The following calibration energies Tcalib

encode these requirements:

d2m data to model distance
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Figure 3.12 … Calibrating progressively improves the 2D/3D tracking metrics, showing a remark-
able improvement in tracking “delity from [Tagliasacchi et al., 2015] to [Proposed Method].

initialization intermediate converged initialization intermediate converged

Figure 3.13 … A visualization of a few iterations of our calibration optimization procedure; see
Video2 [01:30]. Each quadrant displays a data frame Dn , n = 1. . .4. Within each quadrant
we show three iterations of the optimization. The model being calibrated here is the one
employed for real-time tracking in Video2 [02:57].

m2d model to data distance

rigid elements are posed rigidly
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valid elements should not degenerate

To make this calibration more approachable numerically, we rewrite Equation 3.8 as an

alternating optimization problem:

argmin
{Cn },C̄,r̄

� N
n=1

�
T � Tcalib

wT ET (Dn ,Cn ,C̄,r̄) (3.9)

argmin
{� n },�̄

� N
n=1

�
T � Tcalib

wT ET (Cn ,� n ) (3.10)

Our “rst step adjusts rest-pose sphere centers C̄ and radii r̄ , by allowing the model to “t to the

data without any kinematic constraint beyond rigidity, and returning as a side product a set

of per-frame posed centers {Cn }. Our second step takes the set {Cn } and projects it onto the

manifold of kinematically plausible template deformations. This results in the optimization of

the rotational components of rest-pose transformations T̄� , as their translational components

are simply derived from C̄.

Optimization

The energies above are non-linear and non-convex, but can be optimized of”ine, as real-time

tracking only necessitates a pre-calibrated model. For this reason, we conveniently employ

the l sqnonl in Matlab routine, which requires the gradients of our energies as well as an

initialization point. The initialization of C̄ is performed automatically by anisotropically

scaling the vertices of a generic template to roughly “t the rest pose. The initial transformation

frame rotations �̄ are retrieved from the default template, while {� n } are obtained by either

aligning the scaled template to depth images, or by executing inverse kinematics on a few

manually selected keypoints (multi-view stereo). Our (unoptimized) Matlab script calibrates

the model within a few minutes for all our examples.

3.4.1 Energies

Our “tting energies are analogous to the ones used in tracking. They approximate the sym-

metric Hausdorff distance, but they are evaluated on a collection of N frames:

Ed2m =
N�

n=1
|Dn |Š1

�

p� Dn

�p Š � M (� n )(p)� 1
2 (3.11)

Em2d =
N�

n=1
|M (� n )|Š1

�

x� M (� n )
�x Š � Dn (x)� 1

2 (3.12)

Note that the projection operator � Dn changes according to the type of input data. If a

multi-view acquisition system is used to acquire a complete point cloud, then the projection

operator fetches the closest point to p in the point cloud of frame Dn . If Dn is acquired through

monocular acquisition, then � Dn computes the 2D projection to the image-space silhouette
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of the model.

Rigidity

It is essential to estimate a single user template that, once articulated, jointly “ts the set of data

frames {Dn }. For this purpose we require each posed model to be a piecewise-rigid articulation

of our rest pose. This can be achieved by constraining each segment {(cn,i ,cn, j ) | i j � S} of Cn

to have the same length as the corresponding segment ( c̄i , c̄ j ) of the rest pose con“guration C̄:

Erigid =
�

i j � S
(�c n,i Š cn,j �Š � c̄i Š c̄j �)

2 (3.13)

Note that only a subset of the edges of our control skeleton, as illustrated in Figure 3.4, are

required to satisfy this rigidity condition.

Validity

The calibration optimization should avoid producing degenerate con“gurations in our rest

posetemplate C̄. For example, a pill degenerates into a sphere when one of its balls is fully

contained within the volume of the other. Analogously, a wedge can degenerate into a pill

or a sphere. We monitor validity by an indicator function � (B̄i ) that evaluates to one if B̄i is

degenerate and zero otherwise. We make a conservative choice and use � (B̄i ), which veri“es

whether c̄i is inside Ē\ B̄i , the element obtained by removing a vertex, as well as all its adjacent

edges, from Ē. This leads to the following conditional penalty function:

Evalid =
�

Ē� C̄

�

B̄i � Ē

�( B̄i )� c̄i Š � Ē\ B̄i
(c̄i )�

2
2 (3.14)

3.5 Results

We evaluate our technique on a variety of sequences across a number of users, and performe

qualitative as well as quantitative comparisons of our method to the state-of-the-art [Qian

et al., 2014,Sridhar et al., 2015,Tagliasacchi et al., 2015,Sharp et al., 2015,Taylor et al., 2016]. We

also propose new algorithm-agnostic metrics tailored to high-precision tracking evaluation,

and introduce the HANDY dataset.

Template Calibration

The calibration of our model to a collection of 3D data frames is illustrated in Figure 3.13;

note that the same model is rigidly articulated to “t to multiple poses. While for this user we

build a model from multi-view stereo data (omni-directional, complete), it is important to

notice that the use of multiple frames in different poses is a necessity. Only in this situation
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can the centers {Cn } be jointly adjusted to create an articulated model that consensually “ts

the whole dataset. We refer the reader to Video2 [01:30] for a visualization of our iterative

calibration procedure. The calibration from RGBD datasets can be seen at Video2 [01:45], and

the resulting models are illustrated in Figure 3.4.

Kinematic Calibration

The importance of adjusting kinematic chain transformations is shown in Figure 3.8, as well

as the “rst images pair in Figure 4.1. With incorrect transformations, joint limits and the

articulation restrictions of the kinematic chain can prevent the model from being posed

correctly; see a dramatization in Video2 [02:12]. In our experiments we discovered it was

crucial to identify the typical kinematic chain structure using the dataset in Figure 3.13;

user-speci“c calibration optimization used these transformations as initialization.

Comparison metrics

Taylor and colleagues [Taylor et al., 2016] have recently reported how state-of-the-art hand

tracking algorithms have reached human precision in determining the location of key features

(e.g. “ngertips and wrist position). Therefore, publicly available datasets like [Tompson et al.,

2014] and [Sridhar et al., 2013], often relying on human labeling of data, are now unsuitable

to quantitatively evaluate the quality of high-precision tracking. We propose two easy-to-

compute metrics to evaluate the quality of generative tracking algorithms. A core element that

makes these metrics appealing is that, much like key feature positions, they are completely

algorithm agnostic : they can be evaluated as far as a depth map of the tracking model can

be synthesized. This is essential, as it will enable the research community to validate and

compare results through quantitative analysis. We achieve this goal by expressing these

metrics exclusively as a function of the acquired depth image Dn and of the depth image R n

of the rendered model. Below we drop the subscript n for notational brevity and only consider

points p within the RoI. The data-to-model metric is:

E3D = | D|Š1
�

p� D
�p Š � R (p)� 1

2 (3.15)

Differently from before, � R computes the (kd-tree accelerated) closest point correspondence

to the rendered model point cloud, rather than to the model itself. The model-to-data metric

is:

E2D = | R \ � D|Š1
�

x� R \� D
�x Š � � D (x)� 1

2 (3.16)

Each summation term above can be evaluated ef“ciently by pre-computing the 2D Euclidean

distance transform of the RoI•s (image-space) silhouette � D [Tagliasacchi et al., 2015], where

the transform evaluates to zero for a pixel inside the silhouette. Another algorithm agnostic
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Figure 3.14 …[Tkach et al. 2016] is quantitatively compared over time to [Tagliasac-
chi et al. 2015], [Sharp et al. 2015] and [Taylor et al. 2016] on the HANDY/ TEASERsequence.

metric is the golden energyfrom Sharp et al. [Sharp et al., 2015], but this distance does not

encode a monocular Hausdorff like ours do.

Handy dataset

We create the new HANDY tracking dataset for the evaluation of high-precision generative

tracking algorithms. Our dataset contains � 30k depth and color images recorded with an Intel

RealSenseSR300 sensor. The dataset is designed to cover the entire range of motions that has

been surveyed in recent techniques. As detailed in Figure 3.16, we identi“ed three main axes
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Figure 3.15 … Aggregated errors are reported for the tracking sequences in Figure 3.14. These
aggregated measures reveal a signi“cant improvement in tracking precision; see legend in
Figure 3.14.

of complexity in the hand tracking literature, and devised the TEASERdataset to thoroughly

sample this space; see Video2 [02:51].

Further, to enable qualitative comparisons to motions from state-of-the-art papers we also

devised an additional set of sequences:

Video2 [04:53] …TAYL1 rigid and clenching
Video2 [05:40] …SRID1 “ngers extension
Video2 [05:56] …SRID2 “ngers contact
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Figure 3.16 … Our dataset contains a wide range of motions. We identify three main axes of
complexity by analyzing recent hand-tracking papers; see Video2 [02:51]. The distance to the
origin indicates the level of tracking dif“culty.

Video2 [06:15] …SRID3 crossing “ngers

Video2 [06:29] …SRID4 pinching

Video2 [07:33] …SHAR1 fast and complex

Video2 [08:07] …SHAR2 fast rigid

Video2 [08:37] …SHAR3 rotating “st

The sequences marked as tayl*, srid*, and shar* are respectively designed to emulate the

motions in [Taylor et al., 2016], [Sridhar et al., 2015] and [Sharp et al., 2015]. We do not devise

sequences for [Qian et al., 2014] and [Tompson et al., 2014], as the previous datasets already

covered the motion space.

Self evaluation

In Figure 3.11, we adopt the self-evaluation visualization proposed by [Taylor et al., 2016].

We study the changes in algorithm performance as we disable the tracking energy terms in

Equation 3.3 on the HANDY/ TEASERsequence … in all tests, thed2m term is never disabled,

as otherwise immediate loss of tracking occurs. Not surprisingly, we identify the m2d and

poseterms to be the ones dominating tracking performance. Similarly to [Taylor et al., 2016],

while the contribution of other terms is small, we found that it still yields a visually noticeable

improvement.
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Quantitative comparison

Our algorithm has been tested with the Intel RealSenseSR300 (QVGA@60Hz). We have tai-

lored the method of [Tagliasacchi et al., 2015] to support this sensor to enable quantitative

comparisons. In Figure 3.14, our two metrics are plotted per-frame as multiple tracking al-

gorithms are executed on the HANDY/ TEASERsequence, while Figure 3.15 reports aggregated

errors; see Video2 [03:53]. It is important to note our metrics are designed to evaluate “tting

precision; the method of [Sharp et al., 2015] still achieves good tracking robustness on the test

sequences, but the lack of user calibration heavily biases this metric. Aggregated performance

comparisons are also reported in Figure 3.17 for each sequence in the HANDY dataset; see

Video2 [04:50]. These metrics reveal a consistent and signi“cant increase in performance.

Figure 3.12 quantitatively illustrates the tracking bene“ts of template calibration.

Qualitative comparison

We employ the HANDY sequences to perform a qualitative comparison to [Qian et al., 2014,

Sridhar et al., 2015,Sharp et al., 2015,Taylor et al., 2016]. As it can be observed in Video2 [04:50],

our calibrated tracker is capable to replicate any of the motions benchmarked by state-of-the-

art techniques with excellent accuracy.

Further comparisons

Given a suf“ciently rich annotated data sample, it is generally possible to adapt a discrim-

inative tracker to a different sensor from what it was originally designed for. However, for

generative algorithms the task requires some parameter tweaking, a challenging task to achieve

without direct access to each sensor variant. For these reasons, comparisons to datasets de-

veloped on different sensors like D EXTER[Sridhar et al., 2013] or F INGERPAINT [Sharp et al.,

2015] would be misleading. Most importantly, these datasets were acquired at 30Hz, while our

generative algorithm is speci“cally designed to execute at 60Hz. To enable a fair comparison,

we would require the per-frame re-initializer employed by the authors, but no source code for

these algorithms is available.

3.6 Discussion

Our analysis demonstrates how sphere-meshes tracking templates are particularly well suited

for real-time hand-tracking. Our calibration and tracking algorithms are simple to implement,

ef“cient to optimize for, and allow for the geometry to be represented with high “delity. While

the calibration algorithm is currently implemented in Matlab, we are con“dent real-time

performance can be achieved with a simple C++ port of our code. The recently proposed

system of Taylor and colleagues [Taylor et al., 2016], has also demonstrated excellent tracking

quality. Their formulation employs a triangular mesh model and optimizes it in a semi-
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Figure 3.17 … Average 2D/3D tracking performance metrics of the proposed method compared
to [Tagliasacchi et al., 2015]. In the additional material we report error plots through time for
the aggregated data above.

continuous fashion. However, as their model is articulated through linear blend skinning, joint

collapse artifacts can occur. Conversely, our model is volumetric and naturally overcomes

this shortcoming; see Video2 [01:18]. Although it is dif“cult to predict whether surface or

volumetric models will eventually prevail, we believe the simplicity of our representation will

lead to extremely performant articulated tracking algorithms.

Generative tracker

In this chapter we demonstrated a generative algorithm that yields unprecedented levels of

robustness to tracking failure. We would like to stress that our real-time tracking algorithm

is (almost) purely generative: a discriminative technique [Qian et al., 2014] is only employed

in the “rst frame for tracking initialization. We believe our robustness is due to the quality of

the calibrated model, and to the ability to optimize at a constant 60Hz rate. Discriminative

algorithms could still be necessary to compensate for situations where the hand re-appears

from complete occlusions, but their role in real-time tracking will diminish as RGBD sensors

will start offering imaging at frequencies above 60 Hz. To highlight our high frame-rate depen-

dancy, in Video2 [11:02] we analyze the performance on the tracker with varying frame-rates

(60Hz, 30Hz, 15Hz and 7.5Hz) while the additional material reports the corresponding tracking

metrics. In Video2 [10:30] we further investigate tracking failures that include long phases of

total occlusion; note how in these scenarios the mean-pose (Probabilistic PCA) regularizer
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described in [Tagliasacchi et al., 2015, Eq.6] helps tracking recovery.

Downsampling

Although the Intel RealSensesensor is a short range camera, in this work we have downsampled

the depth image to QVGA format with a median “lter, giving an average of 2500 pixels/frame;

this is approximatively the number of samples found on a hand in long-range cameras. The

recent work of [Taylor et al., 2016] reports a total of 192 pixels/frame, therefore enabling CPU

optimization without signi“cant loss of tracking precision. Inspired by this work, we have

experimented with further downsampling and reached analogous conclusions. However, the

computational bottleneck of the htrack system lies in the overhead caused by render/compute

context switching. While this is currently an issue, it is possible to optimize the m2d energies

without rasterizing the model at each iteration. Instead, similarly to [Qian et al., 2014], we

could compute screen-space coordinates of sphere centers, and then construct our m2d

registration energies on this subset.

Reproducibility

The weights of the energy terms used in tracking and calibration optimizations have been

identi“ed by manually tweaking the runtime until our tracker reached the desired performance

level. The parameters of our system are � d2m = 1, � m2d = .5, � r i g id = .3, � val id = 1e2, � pose =

1e4, � l imi t s = 1e7 and � col l i sion = 1e3. We use 7 iterations for the tracking LM optimization,

while l sqnonl in automatically terminates in 5-15 iterations. Source code and datasets are

available at: http://github.com/OpenGP/hmodel .

3.7 Conclusion

In this chapter we have introduced the use of sphere-meshes as a novel geometric representa-

tion for articulated tracking. We have demonstrated how this representation yields excellent

results for real-time registration of articulated geometry, and presented a calibration algorithm

to estimate a per-user tracking template. We have validated our results by demonstrating

qualitative as well as quantitative improvements over the state-of-the-art. Our volumetric

model can be thought of as a generalization of the spherical models presented in [Sridhar

et al., 2015,Qian et al., 2014], and the cylinder models of [Oikonomidis et al., 2011,Tagliasacchi

et al., 2015]. It is also related to the convex body model from [Melax et al., 2013], with the core

advantage that its control skeleton compactly parameterizes its geometry. Our calibration

optimization is related to the works in [Taylor et al., 2014,Khamis et al., 2015,Tan et al., 2016],

with a fundamental difference: the innate simplicity of sphere-meshes substantially simpli“es

the algorithmic complexity of calibration and tracking algorithms. This considered, we believe

that with the use of compute shaders, articulated tracking on the GPU can become as effortless

and ef“cient as simple mesh rasterization.
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Limitations and future work

The topology of our template has been de“ned in a manual trial-and-error process. A more

suitable topology could be estimated by optimization, possibly even adapting the topology for

speci“c users; For example, the work in [Thiery et al., 2016] could be extended to space-time

point clouds. Similarly, one could think of a variant of [Newcombe et al., 2015] where sphere-

meshes are instantiated on-the-”y. The use of more advanced re-initialization techniques

than [Qian et al., 2014], like [Krupka et al., 2014] or [Oberweger et al., 2015b], would be

bene“cial. Further, we believe an interesting venue for future work is how to elegantly integrate

per-frame estimates into generative trackers. Model calibration is currently done in pre-

processing. For certain consumer applications, it would be desirable to calibrate the model

online during tracking, as recently proposed for face tracking systems [Bouaziz et al., 2013].

Our sphere-mesh models are a “rst approximation to the implicit functions lying at the core

of the recently proposed geometric skinning techniques [Vaillant et al., 2013,Vaillant et al.,

2014]. Therefore, we believe the calibration of sphere-meshesto be the “rst step towards

photorealistic real-time hand modeling and tracking.
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tion for Hand Tracking

diag(� � Š1)

diag( �� Š1)

Figure 4.1 … Our adaptive hand tracking algorithm optimizes for a tracking model on the ”y,
leading to progressive improvements in tracking accuracy over time. Above: hand surface
color-coded to visualize the spatially-varying con“dence of the estimated geometry. Insets:
color-coded cumulative certainty. Notice how in the last frame all parameters are certain.
Below : histograms visualize the certainty of each degree of freedom, that is, the diagonal
entries of the inverse of the covariance estimate from: (a) data in the current frame � � , or (b)
the information �� accumulated through time by our system.

This chapter is based on the following publication:

TKACH A., TAGLIASACCHI A., REMELLI E., PAULY M., F ITZGIBBON A.: Online gener-

ative model personalization for hand tracking. ACM Transactions on Graphics (Proc.

SIGGRAPH Asia). 2017.

Abstract

We present a new algorithm for real-time hand tracking on commodity depth-sensing devices.

Our method does not require a user-speci“c calibration session, but rather learns the geometry

as the user performs live in front of the camera, thus enabling seamless virtual interaction
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at the consumer level. The key novelty in our approach is an online optimization algorithm

that jointly estimates pose and shape in each frame, and determines the uncertainty in such

estimates. This knowledge allows the algorithm to integrate per-frame estimates over time,

and build a personalized geometric model of the captured user. Our approach can easily be

integrated in state-of-the-art continuous generative motion tracking software. We provide a

detailed evaluation that shows how our approach achieves accurate motion tracking for real-

time applications, while signi“cantly simplifying the work”ow of accurate hand performance

capture. We also provide quantitative evaluation datasets at http://lgg.ep”.ch/publications/

2017/HOnline/index.php

4.1 Introduction

Tracking templates and personalization

Since depth imagery provides incomplete 3D data of the tracked object, generative trackers

attempt to register a geometric template , also referred to as a tracking model, to 3D data so

to minimize alignement residuals. The more accurately a model “ts the observed user, the

better tracking accuracy can be achieved [Tkach et al., 2016,Taylor et al., 2016]. The process

of accurately generating a user-speci“c tracking model from input data is referred to in the

literature as calibration or personalization.

Calibrating a template from a set of static poses is a standard component in the work”ow

of facial performance capture [Weise et al., 2011, Cao et al., 2015], and the work of [Taylor

et al., 2014] pioneered it within the realm of hand tracking. However, current methods such

as [Taylor et al., 2016] and [Tkach et al., 2016] suffer a major drawback: the template must

be created during a controlled calibration stage, where the hand is scanned in several static

poses (i.e. of”ine ). While appropriate for professional use, a calibration session is a severe

drawback for seamless deployment in consumer-level applications. Therefore, inspired by

recent efforts in facial performance capture that calibrate templates while tracking [Li et al.,

2013,Bouaziz et al., 2013], in this chapter we propose a pipeline for online model calibration.

The approach we present has been tailored to monocular acquisition, where we tackle the

signi“cant technical challenges created by missing data due to self-occlusions.

Contributions

Our core contribution is a principled way to integrate per-frame information into an online

real-time pose/shape tracking algorithm: one that estimates the hand•s pose, while simultane-

ously re“ning its shape. That is, as more of the user•s hand and articulation is observed during

tracking, the more the tracking template is progressively adapted to match the performer,

which in turns results in more accurate motion tracking. From a single frame only a subset

of the shape degrees of freedom can be estimated, for example, it is dif“cult to estimate the

length of a phalanx when observing a straight “nger. Our technique automatically estimates
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the con“dence in per-frame parameter computations, and leverages this information to build a

tracking model that selectively accumulates con“dent parameter estimates over time. Assum-

ing a reasonable performance by the user, our system typically constructs a fully calibrated

model within a few seconds, while simultaneously tracking the user in real time. Perhaps more

importantly, however, if the user is •unreasonableŽ, holding his/her hand in an ambiguous

pose (e.g. “ngers unbent), the system maintains its shape uncertainty until a constraining

pose is adopted.

The key technical component of our solution is a recent tool from control theory … the

Levenberg-Marquardt Kalman Filter (LMKF) of [Skoglund et al., 2015]. Although it has long

been known [Bell and Cathey, 1993,Bellaire et al., 1995] that there are strong links between

Levenberg-style algorithms and the Kalman “lter, and that Kalman “lters are useful to main-

tain uncertainty in visual tracking and SLAM [Strasdat et al., 2012], only recently have the

advantages of both views been combined. This chapter shows, in both qualitative and quanti-

tative performance evaluations, that the LMKF enables practically useful online calibration.

Overall, our solution yields a fully automatic, real-time hand tracking system that is well-suited

for consumer applications.

4.2 Related Work

Model personalization is a core ingredient in generative motion tracking. Due to the large

number of hand self-occlusions, the low signal-to-noise ratio in current depth sensors, a

globally unconstrained pose, and the similar appearance of “ngers make the personalization

of a hand model a harder problem than face or body model calibration; see [Supancic et al.,

2015].

Of”ine model calibration

[Albrecht et al., 2003] pioneered the construction of realistic (skin, bone and muscles) person-

alized models. They proposed a pipeline for the registration of a 3D mesh model to RGB data

manually pre-processed by the user. Reducing the amount of manual interaction required

from the user, [Rhee et al., 2006] showed how skin creases and silhouette images can also be

used to guide the registration of a model to color imagery. [Taylor et al., 2014] introduced a

more automatic pipeline, generating personalized hand models from input depth sequences

where the user rotates his hand while articulating “ngers. More closely related to ours is

the work by [Tan et al., 2016]. They show how to robustly personalize a hand model to an

individual user from a set of depth measurements using a trained shape basis such as the one

proposed by [Khamis et al., 2015]. The calibration pipeline, although robust and ef“cient,

is not fully automated as the user needs to manually pick the set of frames over which the

calibration optimization is performed. In facial calibration, [Weise et al., 2011] asked users

to assume a set of standard facial expressions to match standard poses in the Facial Action

Coding System (FACS) of [Ekman and Friesen, 1977]. Inspired by these approaches, [Taylor
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et al., 2016] recently proposed an analogous of”ine hand calibration method, but the question

•which is the set of optimal hand poses that allows to properly capture the hand•s geometry?Ž

has yet to be addressed. Hence, none of the above methods is suitable or easily adaptable to

the kind of consumer-level applications that we target.

Online model calibration

In [de La Gorce et al., 2011], the authors introduced a (non real-time) model-based approach

for hand tracking from a monocular RGB video sequence. Hand pose, texture and lighting

are dynamically estimated, while shape is determined by optimizing over the “rst frame

only. Recently [Makris and Argyros, 2015] proposed a model-based approach to jointly solve

the pose tracking and shape estimation problem from depth measurements in an online

framework. They solve for the cylindrical geometry of a hand through render-and-compare

evaluations over a set of frames with particle swarm optimization (PSO). Their pipeline runs in

real-time (30fps), but lacks the degree of robustness and accuracy desirable for consumer level

applications, and does not address uncertainty. More sophisticated approaches to information

agglomeration such as the ones for face tracking/modeling by [Bouaziz et al., 2013], [Li et al.,

2013] and [Thies et al., 2015], where shape estimation is performed over the whole set of frames,

allow to obtain more accurate results, while guaranteeing real-time performances. [Thies

et al., 2015] jointly optimize face identity and expression during calibration stage and keep

identity “xed during tracking. The work of [Zou and Tan, 2013], although in a different

applicative domain, is also related to ours, as they solve for SLAM by considering uncertainties

when aggregating information through time. [Gu et al., 2017] propose a holistic approach for

aggregating per-frame measurements. They demonstrate how an LSTM layer in a CNN allows

to maintain an online estimate that surpasses the performance of a more standard Kalman

“lter approach.

Online algorithms offer other key advantages compared to of”ine methods: (1) the ability to

offer immediate feedback to the user on the quality of the result [Izadi et al., 2011], (2) the

potential to dynamically adapt to transparently hot-swap users [Bouaziz et al., 2013], and

(3) reduced storage and computational resources, as information is integrated frame-by-frame,

in a streaming fashion.

4.3 Online model calibration

We now describe our joint calibration and tracking algorithm, which combines the Levenberg-

style optimization of previous hand trackers with the uncertainty maintenance framework of

Kalman “ltering. Previous hand tracking work has made use of temporal smoothing priors

to propagate poseinformation from previous frames, without the use of “ltering. However

this approach cannot be used for shapebecause it is so weakly constrained in any given frame,

and because its temporal prior is so strong, as shape parameters are persistent over time: we

observe the same user performing in front of the camera for thousands of frames. However,
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straight “nger bent “nger

 [1]

 [2]

 �
[1]  +

[1] Š
[1]  Š

[1]  �
[1]  +

[1]

Figure 4.2 …(Per-frame regression) We abstract the hand shape/pose estimation problem
from a single frame into the one of a simpler 2D stick-“gure. Note, however, that this illus-
tration is not hand-crafted, but is derived from numerical optimization executed on these
simpli“ed datasets. When the “nger is straight (left), it is dif“cult to estimate the length of
individual phalanges as the optimization problem is ill-posed. With a bent “nger (right) the
problem is better conditioned. We analyze the landscape of the registration energy E( [1] ),
and observe how estimation uncertainty relates to the width of the local minima valley. This
uncertainty, the posterior distribution of shape parameters after computing their estimate
from the data in the current frame, can be estimated through a quadratic approximation
�E( [1] ), derived from the Hessians of the registration energies.

suf“cient information to estimate certain shape parameters is simply not available in certain

frames. For example, by observing a straight “nger like the one in Figure 4.2-(left), it is dif“cult

to estimate the length of a phalanx. Therefore, knowledge must be gathered from a collection

of frames capturing the user in different poses.

As we illustrate in Figure 4.2 and Figure 4.4, the con“dence in regressed shape parameters

is conditional on the poseof the current frame. Rather than manually picking a few frames

in different poses as in [Taylor et al., 2016], we show how propagation of not just the shape

estimate, but also its uncertainty allows reliable calibration even if the initial poses fail entirely

to constrain some shape dimensions. Additionally, the temporal priors of previous work are

easily incorporated in the LMKF formulation.

Input data and shape model

The input data are a sequence of depth frames Dn , which are segmented via a wristband [Tagliasac-

chi et al., 2015] to produce a point cloud dn � R3. The pose vector in frame n is � n , and our

shape model M (� ;  ) is the sphere mesh of [Tkach et al., 2016]. Shape is encoded via scalar

length parameters  instead of sphere positions; see Figure 4.10 and [Remelli et al., 2017].
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Figure 4.3 …(Cumulative regression) We visualize several temporally sorted frames of in-
put data dn , the uncertainty ellipsoid � �

n estimated by per-frame regression, and the online
uncertainty estimate �� n . For illustration purposes, we only display the two-dimensional
ellipsoids representing the covariance of  [1] and  [2] . Although � �

1 = � �
5 , observe how

�� 1 	 �� 5: in the last frame we have a con“dent estimate as the information from frames
2 : 4 has been integrated. Further, notice how even though the parameter  [2] was not ob-
served directly in any of the presented frames, its value was inferred from the highly-certain
measurements (  [1] )n=2 and ( [1] +  [2] )n=4 .

Estimation

Let xn = [� n ;  n ] denote the model state: the vector of coalesced pose and shape parameters

at frame n. Our goal in tracking is to produce the best estimate �xn , at frame n, of the state xn ,

given all the data seen previously, d1, ...,dn . Additionally, we want to estimate not just the state,

but the parameters of the probability distribution over the state p(xn |d1..n ). Thus, if we write

p(xn |d1..n ) � N (xn | �xn , �� n ), (4.1)

we are saying that xn approximately follows a normal distribution with mean �xn and co-

variance �� n . When we display a tracked hand to the user, we will most likely just draw the

hand with pose and shape parameters �xn , which sometimes leads to �xn being called •the

estimate of xn Ž, but it is more correctly •the estimate of the mean of the distribution p(xn )Ž,

and similarly with �� n .

It is generally computationally intractable to estimate the parameters conditioned on all the

previous history d1..n at every frame (although in Section 4.3.4 we compute some related
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� [1]

� [2]

�

�

Figure 4.4 … A visualization of the covariance
estimate for phalanx lengths { [1] ,  [2] } as we
vary phalanx bend angles {� [1] , � [2] }. A con-
“dent measurement of  [1] is only available
when � [1] is bent, while a con“dent measure-
ment of  [1] +  [2] is available when � [2] is
bent. The covariance ellipsoids are centered
at the corresponding {� [1] , � [2] } location.
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Table 1 … Splitcumulative regression … Kalman Filter (KF)

quantities as a baseline), so the estimation is typically expressed in terms of a per-frame

term p(xn |dn ), which describes the components due only to information in frame dn and

cumulative term p(xn |d1, ...,dnŠ1). Different approximations for this term lead to different

methods, denoted split cumulative and joint cumulative below.

4.3.1 Per-frame estimate … p(xn |dn )

The distribution p(xn |dn ) is, by Bayes• rule, proportional to the product of a data term and

a prior p(dn |xn )p(xn ), which is naturally related to the traditional energy formulations by

identifying the negative log likelihood with the energy. Consider the energy:

E(xn ) =
�

�� T
E� (dn ,xn ) (4.2)
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Where the terms T ensure that:

d2m data points are explained by the model

m2d model lies in the sensor visual-hull

smooth recorded sequence is smooth

pose-prior calibrated hand pose is likely

shape-prior calibrated hand shape is likely

pose-valid semantics: collisions and joint limits

shape-valid semantics: “nger order and connectivity

The energy terms in the objective function are detailed in [Tkach et al., 2016] and [Tagliasac-

chi et al., 2015], with the exception of shape-prior and shape-valid that are discussed in

Section 4.3.5. Given E as above, we can write

p(xn |dn ) 
 exp(ŠE(xn )), (4.3)

but to perform propagation, we will need a more compact form, for example a Gaussian

approximation. A natural choice is the Laplace approximation : a Gaussian with its mean at the

mode of (4.3) (see Appendix 4.6.1) and covariance chosen to match a second-order expansion

of E about that mode. The mode computation is the standard energy minimization

x�
n = argmin

xn

E(xn ) (4.4)

which can be solved by nonlinear optimization given an initialization x0
n (obtained from a

discriminative method or from the solution of the previous time-step), and indeed this is

the same minimization performed by current state-of-the-art hand trackers. The covariance

matrix � �
n of the Laplace approximation is the inverse of the Hessian of E, and as we are

using a Gauss-Newton solver, E(x) is of the form �d n Š F(xn )� 2, so we may make the G-N

approximation of the Hessian in terms of the Jacobian of F̄(xn ) = dn Š F(xn ), yielding

� �
n =

�
� F̄(x� )

� x

� � F̄(x� )
� x

 Š1

. (4.5)

Thus, after processing the information in a frame dn , the sought-after quadratic approximation

of posterior distribution of model parameters is

�p(xn |dn ) � N
�
x�

n , � �
n

�
, (4.6)

so the •per-frameŽ posterior parameters are �xn = x�
n , �� n = � �

n .

4.3.2 Split cumulative estimate … p(xn |d1..n )

The per-frame distribution in Section 4.3.1 encodes the uncertainty in pose and shape solely

due to the data in frame n. To aggregate information from previous frames, we would like a
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Table 2 … Jointcumulative regression … Iterated Extended KF (IEKF)

Figure 4.5 … We evaluate our real-time calibration framework on twelve different subjects. For
each user we show a frame in a (more-or-less) rest pose con“guration, as well as a different
pose selected from the recorded sequence. These results are better appreciated by watching
our Video3 [04:03].

simple form of the distribution p(xn |d1..n ), for example a Gaussian:

p(xn |d1..n ) � N ( �xn , �� n ) (4.7)

Then, given values of the parameters �xnŠ1, �� nŠ1 at the previous timestep, we must update

them to incorporate the new information in frame n. This leads to the following pair of

inductive update equations:

N (xn | �x1, �� 1) = N (xn |x�
1 , � �

1 ) (4.8)

N (xn | �xn , �� n ) = N (xn | �xnŠ1, �� nŠ1)N (xn |x�
n , � �

n ) (4.9)

By applying the product of Gaussians rule [Petersen et al., 2008], we obtain update equations

for �xn and �� n :

�xn = � �
n ( �� nŠ1 + � �

n )Š1 �xnŠ1 + �� nŠ1( �� nŠ1 + � �
n )Š1x�

n

�� n = �� nŠ1( �� nŠ1 + � �
n )Š1� �

n =
�
� �

n
Š1 + �� Š1

nŠ1

� Š1 (4.10)
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